首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErbB3 and ErbB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective.  相似文献   

2.
The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.  相似文献   

3.
Guo Y  Halfter U  Ishitani M  Zhu JK 《The Plant cell》2001,13(6):1383-1400
The SOS3 (for SALT OVERLY SENSITIVE3) calcium binding protein and SOS2 protein kinase are required for sodium and potassium ion homeostasis and salt tolerance in Arabidopsis. We have shown previously that SOS3 interacts with and activates the SOS2 protein kinase. We report here the identification of a SOS3 binding motif in SOS2 that also serves as the kinase autoinhibitory domain. Yeast two-hybrid assays as well as in vitro binding assays revealed a 21-amino acid motif in the regulatory domain of SOS2 that is necessary and sufficient for interaction with SOS3. Database searches revealed a large family of SOS2-like protein kinases containing such a SOS3 binding motif. Using a yeast two-hybrid system, we show that these SOS2-like kinases interact with members of the SOS3 family of calcium binding proteins. Two-hybrid assays also revealed interaction between the N-terminal kinase domain and the C-terminal regulatory domain within SOS2, suggesting that the regulatory domain may inhibit kinase activity by blocking substrate access to the catalytic site. Removal of the regulatory domain of SOS2, including the SOS3 binding motif, resulted in constitutive activation of the protein kinase, indicating that the SOS3 binding motif can serve as a kinase autoinhibitory domain. Constitutively active SOS2 that is SOS3 independent also was produced by changing Thr(168) to Asp in the activation loop of the SOS2 kinase domain. Combining the Thr(168)-to-Asp mutation with the autoinhibitory domain deletion created a superactive SOS2 kinase. These results provide insights into regulation of the kinase activities of SOS2 and the SOS2 family of protein kinases.  相似文献   

4.
rMuc3 is a typical transmembrane mucin and contains a 174 amino acid domain called an SEA module in its C-terminal domain which is cleaved in eukaryotic cells. However, the mechanism by which the rMuc3 SEA module is proteolyzed and its biological significance has to be elucidated. In this study, we showed that the rMuc3 C-terminal domain was cleaved at LSKGSIVV motif within SEA module in prokaryotic cells, the time-dependence of the cleavage was found in the purified rMuc3 C-terminal domain carrying a mutated LSKASIVV motif expressed in bacteria. Thus, the cleavage of rMuc3 SEA module depended on autoproteolysis. The autoproteolysis of the SEA module of rMuc3 C-terminal domain played a critical role in the migration and invasion of the LoVo human colon cancer cells with rMuc3 C-terminal domain in vitro. The rMuc3 C-terminal domain induced a significant activation of HER/ErbB2 phosphorylated form (py1248) in LoVo cells. Inhibition of the phosphorylation by gefitinib (ZD1839) did attenuate migration and invasion of LoVo cells with rMuc3 C-terminal domain. Thus, rMuc3 C-terminal domain undergoes autoproteolysis at its SEA module, which maintains its availability for the potentiation of the signaling process that is modulated by HER/ErbB2 phosphorylation to promote the migration and invasion of LoVo cells.  相似文献   

5.
Erbin contains a class I PDZ domain that binds to the C-terminal region of the receptor tyrosine kinase ErbB2, a class II ligand. The crystal structure of the human Erbin PDZ bound to the peptide EYLGLDVPV corresponding to the C-terminal residues 1247-1255 of human ErbB2 has been determined at 1.25-A resolution. The Erbin PDZ deviates from the canonical PDZ fold in that it contains a single alpha-helix. The isopropyl group of valine at position -2 of the ErbB2 peptide interacts with the Erbin Val(1351) and displaces the peptide backbone away from the alpha-helix, elucidating the molecular basis of class II ligand recognition by a class I PDZ domain. Strikingly, the phenolic ring of tyrosine -7 enters into a pocket formed by the extended beta 2-beta 3 loop of the Erbin PDZ. Phosphorylation of tyrosine -7 abolishes this interaction but does not affect the binding of the four C-terminal peptidic residues to PDZ, as revealed by the crystal structure of the Erbin PDZ complexed with a phosphotyrosine-containing ErbB2 peptide. Since phosphorylation of tyrosine -7 plays a critical role in ErbB2 function, the selective binding and sequestration of this residue in its unphosphorylated state by the Erbin PDZ provides a novel mechanism for regulation of the ErbB2-mediated signaling and oncogenicity.  相似文献   

6.
It has been suggested that binding of p27 and p21 kinase inhibitory proteins (KIPs) to cyclin-dependent kinases (cdks) render them inaccessible to cdk-activating kinase (CAK), presumably by steric hindrance by the C-terminal residues. However, this common mechanism of inhibition is inconsistent with the known structural divergence in the p27 and p21 C-terminal domains. Therefore, we studied the direct binding of N-terminal minimal domain of p27 (amino acids 28-81) to cdk2/cyclin E. An unlabeled p27 minimal domain, mutated in the N-terminal LFG motif, was unable to compete with a labeled minimal domain for binding to cdk2/cyclin E. The p27 and its minimal domain inhibited CAK-mediated phosphorylation of cdk2/cyclin E. This inhibitory effect was significantly diminished with p27 minimal domain mutated in the LFG motif. A synthetic peptide, ACRRLFGPVDSE, from the N-terminal residues 17-28 of p21, was also a potent inhibitor of CAK-mediated cdk2/cyclin E phosphorylation. Taken together, these results show that anchoring of p27 or p21 KIPs to cyclin E via the N-terminal LFG-containing motif can block CAK access to its cdk2/cyclin E substrate.  相似文献   

7.
The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF homology motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF65. KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF65 and the 3′ splice site, an event known to take place at an early step of spliceosome assembly. Here, the analysis of the subcellular localization of mutated forms of KIS indicates that the kinase domain of KIS is the necessary domain for its nuclear localization. As in the case of U2AF65, the UHM-containing C-terminal domain of KIS is required for binding to the splicing factors SF1 and SF3b155. The efficiency of KIS binding to SF1 and SF3b155 is similar to that of U2AF65 in pull-down assays. These results further support the functional link of KIS with splicing factors. Interestingly, when compared to other UHM-containing proteins, KIS presents a different specificity for the UHM docking sites that are present in the N-terminal region of SF3b155, thus providing a new insight into the variety of interactions mediated by UHM domains.  相似文献   

8.
ErbB2 (or HER2) is a receptor tyrosine kinase that is involved in signaling pathways controlling cell division, motility and apoptosis. Though important in development and cell growth homeostasis, this protein, when overexpressed, participates in triggering aggressive HER2+ breast cancers. It is composed of an extracellular part and a transmembrane domain, both important for activation by dimerization, and a cytosolic tyrosine kinase, which activates its intrinsically disordered C-terminal end (CtErbB2). Little is known about this C-terminal part of 268 residues, despite its crucial role in interacting with adaptor proteins involved in signaling. Understanding its structural and dynamic characteristics could eventually lead to the design of new interaction inhibitors, and treatments complementary to those already targeting other parts of ErbB2. Here we report backbone and side-chain assignment of CtErbB2, which, together with structural predictions, confirms its intrinsically disordered nature.  相似文献   

9.
Mirza A  Mustafa M  Talevich E  Kannan N 《PloS one》2010,5(12):e14310

Background

The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored.

Methodology/Principal Findings

In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization.

Conclusion/Significance

Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation.  相似文献   

10.
Direct interaction of focal adhesion kinase with p190RhoGEF   总被引:12,自引:0,他引:12  
Focal adhesion kinase (FAK) is a protein-tyrosine kinase that associates with multiple cell surface receptors and signaling proteins through which it can modulate the activity of several intracellular signaling pathways. FAK activity can influence the formation of distinct actin cytoskeletal structures such as lamellipodia and stress fibers in part through effects on small Rho GTPases, although the molecular interconnections of these events are not well defined. Here, we report that FAK interacts with p190RhoGEF, a RhoA-specific GDP/GTP exchange factor, in neuronal cells and in brain tissue extracts by co-immunoprecipitation and co-localization analyses. Using a two-hybrid assay and deletion mutagenesis, the binding site of the FAK C-terminal focal adhesion targeting (FAT) domain was identified within the C-terminal coiled-coil domain of p190RhoGEF. Binding was independent of a LD-like binding motif within p190RhoGEF, yet FAK association was disrupted by a mutation (Leu-1034 to Ser) that weakens the helical bundle structure of the FAK FAT domain. Neuro-2a cell binding to laminin increased endogenous FAK and p190RhoGEF tyrosine phosphorylation, and co-transfection of a dominant-negative inhibitor of FAK activity, termed FRNK, inhibited lamininstimulated p190RhoGEF tyrosine phosphorylation and p21 RhoA GTP binding. Overexpression of FAK in Neuro-2a cells increased both endogenous p190RhoGEF tyrosine phosphorylation and RhoA activity, whereas these events were inhibited by FRNK co-expression. Because insulin-like growth factor 1 treatment of Neuro-2a cells increased FAK tyrosine phosphorylation and enhanced p190RhoGEF-mediated activation of RhoA, our results support the conclusion that FAK association with p190RhoGEF functions as a signaling pathway downstream of integrins and growth factor receptors to stimulate Rho activity.  相似文献   

11.
The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Delta versus nbp2Delta strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.  相似文献   

12.
13.
Autoinhibition plays a key role in the control of protein kinase activity. ErbB2 is a unique receptor-tyrosine kinase that does not bind ligand but possesses an extracellular domain poised to engage other ErbBs. Little is known about the molecular mechanism for ErbB2 catalytic regulation. Here we show that ErbB2 kinase is strongly autoinhibited, and a loop connecting the alphaC helix and beta4 sheet within the kinase domain plays a major role in the control of kinase activity. Mutations of two Gly residues at positions 776 and 778 in this loop dramatically increase ErbB2 catalytic activity. Kinetic analysis demonstrates that mutational activation is due to approximately 10- and approximately 7-fold increases in ATP binding affinity and turnover number, respectively. Expression of the activated ErbB2 mutants in cells resulted in elevated ligand-independent ErbB2 autophosphorylation, ErbB3 phosphorylation, and stimulation of mitogen-activated protein kinase. Molecular modeling suggests that the ErbB2 kinase domain is stabilized in an inactive state via a hydrophobic interaction between the alphaC-beta4 and activation loops. Importantly, many ErbB2 human cancer mutations have been identified in the alphaC-beta4 loop, including the activating G776S mutation studied here. Our findings reveal a new kinase regulatory mechanism in which the alphaC-beta4 loop functions as an intramolecular switch that controls ErbB2 activity and suggests that loss of alphaC-beta4 loop-mediated autoinhibition is involved in oncogenic activation of ErbB2.  相似文献   

14.
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived phosphotyrosyl peptides (P-peptides) by using molecular dynamics, free energy, and surface plasmon resonance (SPR) analyses. In SPR analysis, these P-peptides showed no binding to the C-SH2 domain, but P-peptides containing a phospho-YXXM or a non-phospho-YXXM motif did bind to the N-SH2 domain. The N-SH2 domain has two phosphotyrosine binding sites in its N- (N1) and C- (N2) terminal regions. Interestingly, we found that P-peptides of pY1180 and pY1241 favored to bind to the N2 site, although all other P-peptides showed favorable binding to the N1 site. Remarkably, two phosphotyrosines, pY1178 and pY1243, which are just 63 amino acids apart from the pY1241 and pY1180, respectively, showed favorable binding to the N1 site. These findings indicate a possibility that the pair of phosphotyrosines, pY1178-pY1241 or pY1243-pY1180, will fold into an appropriate configuration for binding to the N1 and N2 sites simultaneously. Our model structures of the cytoplasmic C-terminal domain of ErbB3 receptor also strongly supported the speculation. The calculated binding free energies between the N-SH2 domain and P-peptides showed excellent qualitative agreement with SPR data with a correlation coefficient of 0.91. The total electrostatic solvation energy between the N-SH2 domain and P-peptide was the dominant factor for its binding affinity.  相似文献   

15.
Zipper-interacting protein kinase (ZIP kinase) has been thought to be involved in apoptosis and the C-terminal leucine zipper motif is important for its function. Recent studies have revealed that ZIP kinase also plays a role in regulating myosin phosphorylation. Here, we found novel ZIP kinase isoform in which the C-terminal non-kinase domain containing a leucine zipper is eliminated (hZIPK-S). hZIPK-S binds to myosin phosphatase targeting subunit 1(MYPT1) similar to the long isoform (hZIPK-L). In addition, we found that hZIPK-S as well as hZIPK-L bind to myosin. These results indicate that a leucine zipper is not critical for the binding of ZIP kinase to MYPT1 and myosin. Consistently, hZIPK-S localized with stress-fibers where they co-localized with myosin. The residues 278-311, the C-terminal side of the kinase domain common to the both isoforms, is involved in the binding to MYPT1, while the myosin binding domain is within the kinase domain. These results suggest that the newly found hZIPK-S as well as the long isoform play an important role in the regulation of myosin phosphorylation.  相似文献   

16.
MEK kinase 2 (MEKK2) is a 70-kDa protein serine/threonine kinase that has been shown to function as a mitogen-activated protein kinase (MAPK) kinase kinase. MEKK2 has its kinase domain in the COOH-terminal moiety of the protein. The NH(2)-terminal moiety of MEKK2 has no signature motif that would suggest a defined regulatory function. Yeast two-hybrid screening was performed to identify proteins that bind MEKK2. Protein kinase C-related kinase 2 (PRK2) was found to bind MEKK2; PRK2 has been previously shown to bind RhoA and the Src homology 3 domain of Nck. PRK2 did not bind MEKK3, which is closely related to MEKK2. The MEKK2 binding site maps to amino acids 637-660 in PRK2, which is distinct from the binding sites for RhoA and Nck. This sequence is divergent in the closely related kinase PRK1, which did not bind MEKK2. In cells, MEKK2 and PRK2 are co-immunoprecipitated and PRK2 is activated by MEKK2. Similarly, purified recombinant MEKK2 activated PRK2 in vitro. MEKK2 activation of PRK2 is independent of MEKK2 regulation of the c-Jun NH(2)-terminal kinase pathway. MEKK2 activation of PRK2 results in a bifurcation of signaling for the dual control of MAPK pathways and PRK2 regulated responses.  相似文献   

17.
18.
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.  相似文献   

19.
RIP3 is a novel gene product containing a N-terminal kinase domain that shares extensive homology with the corresponding domain in RIP (receptor-interacting protein) and RIP2. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 has a unique C terminus. RIP3 binds RIP through its unique C-terminal segment and by virtue of this interaction is recruited to the tumor necrosis factor (TNF) receptor-1 signaling complex. Previous studies have shown that RIP mediates TNF-induced activation of the anti-apoptotic NF-kappaB pathway. RIP3, however, attenuates both RIP and TNF receptor-1-induced NF-kappaB activation. Overexpression studies revealed RIP3 to be a potent inducer of apoptosis, capable of selectively binding to large prodomain initiator caspases.  相似文献   

20.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号