首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.  相似文献   

4.
Adult stem cells are the most primitive cells of a lineage and are distinguished by the properties of self-renewal and multipotency. Coordinated control of stem cell proliferation and multilineage differentiation is essential to ensure a steady output of differentiated daughter cells necessary to maintain tissue homeostasis. However, little is known about the signals that coordinate stem cell proliferation and daughter cell differentiation. Here we investigate the role of the conserved JAK/STAT signaling pathway in the Drosophila intestinal stem cell (ISC) lineage. We show first, that JAK/STAT signaling is normally active in both ISCs and their newly formed daughters, but not in terminally differentiated enteroendocrine (ee) cells or enterocyte (EC) cells. Second, analysis of ISC lineages shows that JAK/STAT signaling is necessary but not sufficient for daughter cell differentiation, indicating that competence to undergo multilineage differentiation depends upon JAK/STAT. Finally, our analysis reveals JAK/STAT signaling to be a potent regulator of ISC proliferation, but not ISC self-renewal. On the basis of these findings, we suggest a model in which JAK/STAT signaling coordinates the processes of stem cell proliferation with the competence of daughter cells to undergo multilineage differentiation, ensuring a robust cellular output in the lineage.  相似文献   

5.
The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process [1], [2], [3] and [4]. With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.  相似文献   

6.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

7.
8.
The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signal transduction pathway), vestigial or shotgun undergo profound cell shape changes and are extruded towards the basal side of the epithelium. Compartment-wide expression of a dominant-negative form of the Wingless transducer T-cell factor (TCF/Pangolin), or double-stranded RNA targeting vestigial or shotgun, leads to abnormally short cells throughout this region, indicating that these genes act cell autonomously to maintain normal columnar cell shape. Conversely, overexpression of Wingless, a constitutively-active form of the Wingless transducer β-catenin/Armadillo, or Vestigial, results in precocious cell elongation. Co-expression of Vestigial partially suppresses the abnormal cell shape induced by dominant-negative TCF. We conclude that Wingless signal transduction plays a cell-autonomous role in promoting and maintaining the columnar shape of wing disc cells. Furthermore, our data suggest that Wingless controls cell shape, in part, through maintaining vestigial expression.  相似文献   

9.
FMRP is an RNA binding protein linked to the most common form of inherited mental retardation, Fragile X syndrome (FraX). In addition to severe cognitive deficits, FraX etiology includes postpubescent macroorchidism, which is thought to result from overproliferation. Using a Drosophila FraX model, we show that FMRP controls germline proliferation during oogenesis. dFmr1 null ovaries contain egg chambers with both fewer and supranumerary germ cells. The mutant germaria contain a significantly increased number of cyclin E and PhosphoHistone H3 positive cells, suggesting that loss of FMRP leads to defects in cell cycle progression. BrdU incorporation and flow cytometry data suggest that, in addition to proliferation, germline endoreplication and ploidy are also affected by the loss of FMRP during ovary development. Here we report that FMRP controls the levels of cbl mRNA in the ovary and that reducing cbl gene dosage by half rescues the dFmr1 oogenesis phenotypes. These data support a model whereby FMRP controls germline proliferation by regulating the expression of cbl in the developing ovary.  相似文献   

10.
11.
Cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, has important roles in the regulation of inflammation, immune response, apoptosis, mitosis, cell migration and tumorigenesis. Although great progress has been made in the biochemical and cellular functions of CYLD, its role in animal development remains elusive. In this study, we identified Drosophila CYLD (dCYLD) as a negative regulator of the Hippo pathway in vivo. dCYLD associates and colocalizes with Hpo, a core component of the Hippo pathway, in the cytoplasm, and decreases Hpo activity through limiting its phosphorylation at T195. We also showed that dCYLD limits Hippo signal transduction as evidenced by decreasing phosphorylation and thereby increasing activity of Yki, the key downstream effector of the Hippo pathway. These findings uncover dCYLD as a negative regulator of the Hippo pathway and provide new insights into the physiological function of dCYLD in animal development.  相似文献   

12.
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation.  相似文献   

13.
14.
The ventral nerve cord (VNC) of the Drosophila embryo is derived from neuroblasts (NBs). NBs divide in a stem cell lineage to generate a series of ganglion mother cells (GMCs), each of which divides once to produce a pair of neurons or glial cells. One of the NB genes, castor (cas), is expressed in a subset of NBs and has never been identified in neurons and the peripheral nervous system; cas plays a role in axonogenesis. But its limited expression along the dorsal-ventral axis within the central nervous system has not been investigated yet. In the present study, we examined the expression patterns of both genes using confocal microscopy to determine the effects of repo mutation on cas expression. Cas was mainly expressed in layers different from repo-expressed layers during early embryogenesis: repo was expressed mostly from deep to mid layers, while cas, from mid to superficial layers. Loss-of-function of repo did not result in an ectopic expression of cas, but rather, a scattering of cas-expressing cells. However, repo gain-of-function mutation caused repression of cas. In addition, repo-expressing cells seemed to block the migration of cas-expressing cells.  相似文献   

15.
We have characterized the gene emperor's thumb (et) and showed that it is required for the regulation of apoptosis in Drosophila. Loss-of-function mutations in et result in apoptosis associated with a decrease in the concentration of DIAP1. Overexpression of one form of et inhibits apoptosis, consistent with et having an anti-apoptotic function; however, overexpression of a second form of et induces apoptosis, indicating that the two forms of et may have competing functions. et encodes a protein deubiquitinase, suggesting it regulates apoptosis by controlling the stability of apoptotic regulatory proteins.  相似文献   

16.
17.
Cells receive and interpret extracellular signals to regulate cellular responses such as proliferation, cell survival and differentiation. However, proper inactivation of these signals is critical for appropriate homeostasis. Cbl proteins are E3-ubiquitin ligases that restrict receptor tyrosine kinase (RTK) signaling, most notably EGFR (Epidermal Growth Factor Receptor), via the endocytic pathway. Consistently, many mutant phenotypes of Drosophila cbl (D-cbl) are due to inappropriate activation of EGFR signaling. However, not all D-cbl phenotypes can be explained by increased EGFR activity. Here, we report that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. The long isoform, D-CblL, regulates the EGFR. We found that the short isoform, D-CblS, preferentially restricts Notch signaling. Specifically, our data imply that D-CblS controls the activity of the Notch ligand Delta. Taken together, these data suggest that D-Cbl controls the EGFR and Notch/Delta signaling pathways through production of two alternatively spliced isoforms during development in Drosophila.  相似文献   

18.
Ubiquitination and the reverse process deubiquitination regulate protein stability and function during animal development. The Drosophila USP5 homolog Leon functions as other family members of unconventional deubiquitinases, disassembling free, substrate-unconjugated polyubiquitin chains to replenish the pool of mono-ubiquitin, and maintaining cellular ubiquitin homeostasis. However, the significance of Leon/USP5 in animal development is still unexplored. In this study, we generated leon mutants to show that Leon is essential for animal viability and tissue integrity during development. Both free and substrate-conjugated polyubiquitin chains accumulate in leon mutants, suggesting that abnormal ubiquitin homeostasis caused tissue disorder and lethality in leon mutants. Further analysis of protein expression profiles in leon mutants shows that the levels of all proteasomal subunits were elevated. Also, proteasomal enzymatic activities were elevated in leon mutants. However, proteasomal degradation of ubiquitinated substrates was impaired. Thus, aberrant ubiquitin homeostasis in leon mutants disrupts normal proteasomal degradation, which is compensated by elevating the levels of proteasomal subunits and activities. Ultimately, the failure to fully compensate the dysfunctional proteasome in leon mutants leads to animal lethality and tissue disorder.  相似文献   

19.
Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild.  相似文献   

20.
The proper removal of superfluous neurons through apoptosis and subsequent phagocytosis is essential for normal development of the central nervous system (CNS). During Drosophila embryogenesis, a large number of apoptotic neurons are efficiently engulfed and degraded by phagocytic glia. Here we demonstrate that glial proficiency to phagocytose relies on expression of phagocytic receptors for apoptotic cells, SIMU and DRPR. Moreover, we reveal that the phagocytic ability of embryonic glia is established as part of a developmental program responsible for glial cell fate determination and is not triggered by apoptosis per se. Explicitly, we provide evidence for a critical role of the major regulators of glial identity, gcm and repo, in controlling glial phagocytic function through regulation of SIMU and DRPR specific expression. Taken together, our study uncovers molecular mechanisms essential for establishment of embryonic glia as primary phagocytes during CNS development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号