首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intact synaptosomes isolated from mammalian brain tissues (rat, mouse, gerbil, and human) have an ATP hydrolyzing enzyme activity on their external surface. The synaptosomal ecto-ATPase(s) possesses characteristics consistent with those that have been described for ecto-ATPases of various other cell types. The enzyme has a high affinity for ATP (the apparent Km values are in the range of 2-5 X 10(-5) M), and is apparently stimulated equally well by either Mg2+ or Ca2+ in the absence of any other cations. The apparent activation constant for both divalent cations is approximately 4 X 10(-4) M in all mammalian brain tissues studied. The involvement of a non-specific phosphatase in the hydrolysis of externally added ATP is excluded. ATP hydrolysis is maximal in the pH range 7.4-7.8 for both divalent cation-dependent ATPase activities. Dicyclohexylcarbodiimide, 2,4-dinitrophenol, trifluoperazine, chlorpromazine, and p-chloromercuribenzoate (50 microM) inhibit the ecto-ATPase, whereas ouabain (1 mM) and oligomycin (3.5 micrograms X mg-1 protein) show little or no inhibition of this enzyme activity. Inhibitor data suggest that the Mg2+- and Ca2+-dependent ecto-ATPase may represent two different enzymes on the surface of synaptosomes.  相似文献   

2.
Using a synthesized glycoprotein, beta-galactosidase modified with p-aminophenyl beta-D-galactopyranoside (beta-D-Gal beta-gal), the incorporation of the glycoprotein into bovine brain synaptosomes was studied. The uptake was mediated by a specific receptor to beta-D-galactoside, and was inhibited by GM1 ganglioside. The uptake was found to require energy and to be sensitive to metabolic inhibitors. Kinetic studies on beta-D-Gal beta-gal uptake indicated the presence of a saturable, carrier-mediated transport system in synaptosomes. By subcellular fractionation the beta-D-Gal beta-gal taken up was found in the fractions corresponding to the nucleus and membrane fragments, the soluble cytosomal fractions, and the mitochondria and lysosomes. The uptake was markedly increased by addition of Ca2+ to the incubation medium. The maximal uptake was obtained at pH 8.0 in the presence of 10 mM Ca2+ at 37 degrees C. By addition of a Ca2+ ionophore A23187, beta-D-Gal beta-gal uptake was increased in a dose-dependent way parallel to the increase in the intrasynaptosomal concentration of Ca2+. Preincubation of synaptosomes with calmodulin antagonists such as trifluoperazine and N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W-7) was found to inhibit the uptake markedly, and diazepam, an inhibitor of Ca2+/calmodulin-dependent protein kinase, also inhibited the uptake. At a concentration between 1 and 10 microM, 50% inhibition of the uptake was observed with either inhibitor. On the other hand, the addition of dibutyryl cyclic AMP did not affect the uptake of the glycoprotein into synaptosomes. These results suggest that the incorporation of this macromolecule is dependent on a Ca2+/calmodulin-dependent protein kinase.  相似文献   

3.
Zinc Uptake into Synaptosomes   总被引:4,自引:0,他引:4  
Zinc uptake was studied in synaptosomes, isolated by the Ficoll flotation technique, using the radiotracer 65Zn. True uptake of zinc could be discriminated from binding to the outside of the synaptosomes by the absence of accumulation at 0 degree C and the dependency of the rate of uptake on the medium osmolarity. The zinc uptake, studied in the presence of various zinc-complexing agents, showed saturation kinetics when analyzed in terms of [Zn]free, yielding Km = 0.25 microM. The zinc uptake was independent of both ATP and the Na+ gradient. No efflux of zinc could be demonstrated from preloaded synaptosomes due to the formation of insoluble zinc complexes inside the synaptosomes. The results are discussed in terms of the modulation of diverse neurochemical processes by zinc.  相似文献   

4.
Control of Noradrenaline Release from Hippocampal Synaptosomes   总被引:1,自引:0,他引:1  
Abstract Potassium-evoked tritiated noradrenaline (NA) release from hippocampal synaptosomes was measured with a superfusion method. A single 2-min high-K+ pulse released 39% of the vesicular NA by a Ca2+-dependent mechanism; the Ca2+-independent release was negligible. After changing the vesicular NA store size by pretreating rats with either α-methyl-para-tyrosine, 500 mg/kg, or tranylcypromine, 10 mg/kg, a single K+ pulse released a constant percentage of the vesicular NA. With two K+ pulses, however, there was a reduction in the percentage of vesicular N A released in response to the second pulse.  相似文献   

5.
Tryptophan uptake, hydroxylation, and decarboxylation in isolated synaptosomes were studied to assess how their properties may determine the rate of serotonin synthesis in the presynaptic nerve terminals of the brain. Simultaneous measurements of the rates of uptake, hydroxylation, and decarboxylation in the presence and absence of various inhibitors showed that tryptophan hydroxylase is rate-limiting for serotonin synthesis in this model system. There was significant direct decarboxylation of tryptophan to tryptamine. Measurement of tryptophan hydroxylase flux with varying internal concentrations of tryptophan allowed the determination of the Km of tryptophan hydroxylase in synaptosomes for tryptophan of 120 +/- 15 microM. Depolarisation of synaptosomes with veratridine caused both a reduction in the internal tryptophan concentration and an apparent activation of tryptophan hydroxylase. This activation did not occur in the absence of Ca2+ or in the presence of trifluoperazine. Synaptosomal serotonin synthesis and brain stem-soluble tryptophan hydroxylase were inhibited by low concentrations of noradrenaline or dopamine. Dibutyryl cyclic AMP, glucagon, insulin, and vasopressin were observed to have no effect on tryptophan uptake or hydroxylation in synaptosomes.  相似文献   

6.
Phosphate Ion Transport in Rabbit Brain Synaptosomes   总被引:1,自引:1,他引:0  
Abstract: Synaptosomes (vesicles of nerve endings) isolated from rabbit brain were studied as a model system for the uptake of inorganic phosphate. The phosphate uptake showed a sodium-dependent, saturable component with a K t of 0.29 m m , The sodium-dependent component was larger at pH 6 than at pH 7.4 or 8. Application of potassium salts, ouabain, monensin, nigericin or FCCP decreased the uptake. The results indicate that the sodium-sensitive phosphate influx is dependent on the Na+ gradient and on the membrane potential, which might act, preferentially, on the transport of the monovalent phosphate ion.  相似文献   

7.
Rat Brain Synaptosomes Prepared by Phase Partition   总被引:1,自引:1,他引:1  
Synaptosomes from rat forebrain can easily be isolated by combining centrifugation with partition in an aqueous two-phase system composed of dextran T500 and polyethylene glycol 4000 in which synaptosomes have an extreme affinity for the upper phase. The fraction thus obtained has been characterized by electron microscopy and biochemical markers for synaptosomes and some other cell components. The contamination by microsomes, free mitochondria, and myelin was 4.4, 3.2, and 0.1%, respectively. The morphometric analysis of the electron micrographs shows that greater than 60% of the structures are synaptosomes. This preparation of the isolation procedure is remarkably short (less than 1 h), formance as assayed by their respiratory activities and ATP level in the absence and presence of depolarizing agents. Synaptosomes prepared by phase partition release the neurotransmitter glutamate in a Ca2(+)-dependent manner. The duration of the isolation procedure is remarkably short (less than 1 h), no ultracentrifuge is required, and the method can be applied for small- or large-scale preparations.  相似文献   

8.
Storage and Release of Noradrenaline in Hypothalamic Synaptosomes   总被引:1,自引:1,他引:0  
Abstract: The noradrenaline storage capacity of vesicles in hypothalamic synaptosomes was measured by incubating them with [3H]noradrenaline under saturating conditions. The normal noradrenaline content is 52% of storage capacity. Incubation or superfusion with 50 mm -potassium causes calcium-dependent release from the vesicles. Such release reduces not only the vesicular content, but also the noradrenaline storage capacity. This suggests that after exocytosis vesicles cannot refill with noradrenaline.  相似文献   

9.
Acetylcholine Turnover and Compartmentation in Rat Brain Synaptosomes   总被引:2,自引:1,他引:1  
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+-free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2H4]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration.  相似文献   

10.
The effects of quinacrine on depolarization-induced [3H]acetylcholine (ACh) release and 45Ca2+ influx were examined in rat brain cortical synaptosomes. Quinacrine significantly reduced the stimulated release of [3H]ACh by high K+ and veratridine without affecting the spontaneous efflux from the preloaded synaptosomes. Quinacrine had no effect on ionophore A23187-induced release of [3H]ACh from the synaptosomes. Quinacrine (100 μM) markedly diminished the stimulated Ca2+ influx by veratridine and high K+ but not that by “Na+-free.” Trifluoperazine, a potent calmodulin antagonist, inhibited both Ca2+ influx and ACh release induced by the depolarizing agents. Inhibitory potencies of the two drugs on ACh release and Ca2+ influx were compared with the antagonism of calmodulin by two drugs, suggesting that the inhibition of depolarization-induced Ca2+ influx and ACh release by these drugs could not be explained by the antagonism of calmodulin.  相似文献   

11.
In a study employing mouse brain synaptosomes and synaptosomal sonicates, the complete metabolic machinery was found to be present for transport of arginine into synaptosomes, its conversion to ornithine, and the formation from the latter of glutamic acid, gamma-aminobutyric acid, and proline. The results show that a delicate balance probably exists between the flows of metabolites. This balance, which probably determines the steady-state levels of these substances in nerve terminals, can be altered by concentrations of the metabolites themselves through feedback inhibition as well as by levels of cofactors.  相似文献   

12.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:2,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   

13.
Synaptosomes isolated from rat cerebra were used to study the effects of the inhalational anesthetic, halothane, on cholinergic processes. To identify possible mechanisms responsible for the depression of acetylcholine synthesis, we examined the effects of halothane on precursor metabolite metabolism involved with supplying the cytosol with acetyl-CoA for acetylcholine synthesis. Three percent halothane/air (vol/vol) depressed 14CO2 evolution from labeled pyruvate and glucose. Steady-state 14CO2 evolution from [1-14C]glucose was depressed 84% by halothane, while 14CO2 evolution from [6-14C]glucose and [3,4-14C]glucose was decreased 67 and 52%, respectively, when compared with control conditions. Halothane inhibited the activities of both pyruvate dehydrogenase (14% depression) and ATP-citrate lyase (32% depression). Total synaptosomal acetyl-CoA concentrations were unaffected by halothane. Three percent halothane/air (vol/vol) caused a 77% increase in medium glucose depletion rate from 1.38 nmol (mg protein)-1 min-1 to 2.44 nmol (mg protein)-1 min-1. Production of lactate by the synaptosomes in the presence of halothane increased by 231% from a control rate of 1.44 nmol (mg protein)-1 min-1 to 4.77 nmol (mg protein)-1 min-1. Lactate production rate from pyruvate was also enhanced by 56% in the presence of halothane. These data lend support to the concept that the NAD+/NADH potential may be involved in the halothane-induced depression of acetylcholine synthesis.  相似文献   

14.
Abstract: Black widow spider venom (BWSV) promoted the massive release of labeled acetylcholine from synaptosomes and in addition, inhibited high-affinity choline uptake into the preparation. Both activities occurred in the absence of [Ca2+]0. When Na+ in Krebs-Ringer was replaced isotonically by sucrose, BWSV did not cause any release of [3H]ACh. On the other hand, BWSV was still effective if Na+ was replaced by lithium, glucosamine, or Tris. Tetrodotoxin (10?5 M) failed to prevent the ACh-releasing action of the venom. The uptake of [3H]norepinephrine and [3H]tyrosine into the P2 fraction was significantly inhibited by BWSV pretreatment. However, the effect of the venom on the uptake of [3H]deoxyglucose was slight. In addition, the venom-induced release of [3H]norepinephrine was much higher than that of [3H]deoxyglucose. The change in membrane potential of the preparation in duced by BWSV as examined using the voltage-sensitive fluorescence probe, 3, 3′-dipentyl-2, 2′-oxacarbocyanine. BWSV pretreatment markedly increased the synaptosomal fluorescence, indicating a depolarization of the preparation. This action of the venom was also observed in a Ca2+ -free or K+ -free medium, but could be blocked by pretreatment with antivenom. Pretreatment of the P2 fraction with concanavalin A completely blocked the action of BWSV. Also, the BWSV failed to promote the release of transmitter if the venom was prein-cubated with a low concentration of purified gangliosides. Even after prolonged treatment with high concentrations of BWSV, an electron microscopic study showed no depletion of the synaptic vesicles in presynaptic terminals of the cortical P2 preparations or striatal slices. It is suggested that the venom expresses its activity by binding to glycoproteins and/or gangliosides on the synaptic membrane, opening a cation channel. The subsequent depolarization then inhibits uptake processes and promotes transmitter release that is independent of external calcium.  相似文献   

15.
Uptake of 10 microM L-tryptophan into isolated rat brain synaptosomes was studied to assess its effect on the rate of serotonin synthesis from tryptophan. The initial rate of uptake was rapid, being two orders of magnitude above the rate of tryptophan hydroxylation. Uptake was highly concentrative, the concentration ratio across the plasma membrane at equilibrium being approximately 9. This concentration ratio was decreased to about 1 in the presence of high concentrations of amino acids transported by the L-type neutral amino acid uptake system. A mixture of the large neutral amino acids at physiological concentrations decreased the internal tryptophan concentration to 58% of that in their absence. Large tryptophan concentration ratios were observed in experiments in which Na+ in the medium was replaced with choline+. The concentrative uptake of tryptophan was energy-dependent, being decreased by inclusion of cyanide and omission of glucose. The concentration gradient was abolished by veratridine or rotenone. Time courses of the changes in ATP content and tryptophan concentration ratio on addition of these and other agents established that tryptophan uptake is probably not driven by ATP hydrolysis or efflux of other amino acids, but by the plasma membrane potential.  相似文献   

16.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

17.
Quantitation of Cholinergic Synaptosomes from Guinea Pig Brain   总被引:1,自引:7,他引:1  
An antiserum raised to nerve terminal sacs derived from the electric organ and Torpedo marmorata was used to lyse guinea pig brain synaptosomes in the presence of complement. From the release of the cytoplasmic enzymes choline acetyltransferase, lactate dehydrogenase, tyrosine hydroxylase and glutamate decarboxylase it appears that the antiserum binds specifically to cholinergic terminals. The amount of lactate dehydrogenase released was used to estimate the proportion of cholinergic nerve terminals in different synaptosome preparations.  相似文献   

18.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

19.
Abstract: The detection of acetylcholine (ACh) with a chemiluminescent procedure enables one to follow continuously the release of transmitter from stimulated synaptosomes and to study the compartmentation of ACh in resting and active nerve terminals. A compartment of ACh liberated almost entirely by a single freezing and thawing could be directly measured and compared with a compartment of ACh resistant to several cycles of freezing and thawing but liberated by a detergent (60–70% of the total). It is the compartment liberated by freezing and thawing that is reduced when synaptosomes are stimulated. Up to half the total synaptosomal ACh content is readily releasable provided the calcium entry is maintained, or if a strong releasing agent such as the venom of Glycera convoluta is used. In addition, it is shown that synaptosomes contain only negligible amounts of choline, and that the proportion of the two ACh compartments is not influenced by changing extracellular calcium just before their determination.  相似文献   

20.
5,6-Dihydroxytryptamine is a neurotoxic analogue of serotonin which can have profound cardiovascular effects within minutes of administration in vivo (Korner and Head, 1981). These effects have been attributed to 5,6-dihydroxytryptamine-induced serotonin release, although there has been no biochemical assessment of the extent to which this occurs. The present study utilized an in vitro synaptosomal assay to determine the short-term effects of 5,6-dihydroxytryptamine on endogenous serotonin release, synthesis, storage, and metabolism. 5,6-Dihydroxytryptamine produced a rapid depletion of serotonin. At lower concentrations of 5,6-dihydroxytryptamine (0.1-1 microM), this depletion was associated primarily with an increase in the levels of 5-hydroxyindoleacetic acid, the deaminated metabolite of serotonin, with small increases in the amount of serotonin release. At higher concentrations (10-100 microM), a greater proportion of the depleted serotonin was released with less metabolism occurring. When metabolism was prevented by inhibiting monoamine oxidase, the amount of serotonin which was released equalled the amount of serotonin depletion. Thus monoamine oxidase activity was important in controlling the amount of serotonin which could be released by 5,6-dihydroxytryptamine. Further studies demonstrated that an impairment in serotonin synthesis and vesicular storage could account for the rapid depletion produced by 5,6-dihydroxytryptamine. Taken together, the results indicate that 5,6-dihydroxytryptamine acts to displace serotonin from vesicular stores into the cytoplasm where it can either be deaminated by monoamine oxidase or be released. Moreover, it is hypothesized that the intraneuronal concentration of 5,6-dihydroxytryptamine is important in determining the extent of serotonin release, because it can inhibit the deamination of serotonin by monoamine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号