首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In this study, we report two high‐resolution structures of the pyridoxal 5′ phosphate (PLP)‐dependent enzyme kynurenine aminotransferase‐I (KAT‐I). One is the native structure with the cofactor in the PLP form bound to Lys247 with the highest resolution yet available for KAT‐I at 1.28 Å resolution, and the other with the general PLP‐dependent aminotransferase inhibitor, aminooxyacetate (AOAA) covalently bound to the cofactor at 1.54 Å. Only small conformational differences are observed in the vicinity of the aldimine (oxime) linkage with which the PLP forms the Schiff base with Lys247 in the 1.28 Å resolution native structure, in comparison to other native PLP‐bound structures. We also report the inhibition of KAT‐1 by AOAA and aminooxy‐phenylpropionic acid (AOPP), with IC50s of 13.1 and 5.7 μM, respectively. The crystal structure of the enzyme in complex with the inhibitor AOAA revealed that the cofactor is the PLP form with the external aldimine linkage. The location of this oxime with the PLP, which forms in place of the native internal aldimine linkage of PLP of the native KAT‐I, is away from the position of the native internal aldimine, with the free Lys247 substantially retaining the orientation of the native structure. Tyr101, at the active site, was observed in two conformations in both structures.  相似文献   

2.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

3.
Alliinase (alliin lyase EC 4.4.1.4), a PLP-dependent alpha, beta-eliminating lyase, constitutes one of the major protein components of garlic (Alliium sativum L.) bulbs. The enzyme is a homodimeric glycoprotein and catalyzes the conversion of a specific non-protein sulfur-containing amino acid alliin ((+S)-allyl-L-cysteine sulfoxide) to allicin (diallyl thiosulfinate, the well known biologically active component of freshly crushed garlic), pyruvate and ammonia. The enzyme was crystallized in the presence of (+S)-allyl-L-cysteine, forming dendrite-like monoclinic crystals. In addition, intentionally produced apo-enzyme was crystallized in tetragonal form. These structures of alliinase with associated glycans were resolved to 1.4 A and 1.61 A by molecular replacement. Branched hexasaccharide chains N-linked to Asn146 and trisaccharide chains N-linked to Asn328 are seen. The structure of hexasaccharide was found similar to "short chain complex vacuole type" oligosaccharide most commonly seen in plant glycoproteins. An unexpected state of the enzyme active site has been observed in the present structure. The electron density in the region of the cofactor made it possible to identify the cofactor moiety as aminoacrylate intermediate covalently bound to the PLP cofactor. It was found in the present structure to be stabilized by large number of interactions with surrounding protein residues. Moreover, the existence of the expected internal aldimine bond between the epsilon-amino group of Lys251 and the aldehyde of the PLP is ruled out on the basis of a distinct separation of electron density of Lys251. The structure of the active site cavity in the apo-form is nearly identical to that seen in the holo-form, with two sulfate ions, an acetate and several water molecules from crystallization conditions that replace and mimic the PLP cofactor.  相似文献   

4.
J C Eads  M Beeby  G Scapin  T W Yu  H G Floss 《Biochemistry》1999,38(31):9840-9849
The biosynthesis of ansamycin antibiotics, including rifamycin B, involves the synthesis of an aromatic precursor, 3-amino-5-hydroxybenzoic acid (AHBA), which serves as starter for the assembly of the antibiotics' polyketide backbone. The terminal enzyme of AHBA formation, AHBA synthase, is a dimeric, pyridoxal 5'-phosphate (PLP) dependent enzyme with pronounced sequence homology to a number of PLP enzymes involved in the biosynthesis of antibiotic sugar moieties. The structure of AHBA synthase from Amycolatopsis mediterranei has been determined to 2.0 A resolution, with bound cofactor, PLP, and in a complex with PLP and an inhibitor (gabaculine). The overall fold of AHBA synthase is similar to that of the aspartate aminotransferase family of PLP-dependent enzymes, with a large domain containing a seven-stranded beta-sheet surrounded by alpha-helices and a smaller domain consisting of a four-stranded antiparallel beta-sheet and four alpha-helices. The uninhibited form of the enzyme shows the cofactor covalently linked to Lys188 in an internal aldimine linkage. On binding the inhibitor, gabaculine, the internal aldimine linkage is broken, and a covalent bond is observed between the cofactor and inhibitor. The active site is composed of residues from two subunits of AHBA synthase, indicating that AHBA synthase is active as a dimer.  相似文献   

5.
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.  相似文献   

6.
Aminotransferases catalyze reversibly the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5′-phosphate (PLP) as a cofactor. Various aminotransferases acting on a range of substrates have been reported. Aromatic transaminases are able to catalyze the transamination reaction with both aromatic and acidic substrates. Two aminotransferases from C. albicans, Aro8p and Aro9p, have been identified recently, exhibiting different catalytic properties. To elucidate the multiple substrate recognition of the two enzymes we determined the crystal structures of an unliganded CaAro8p, a complex of CaAro8p with the PLP cofactor bound to a substrate, forming an external aldimine, CaAro9p with PLP in the form of internal aldimine, and CaAro9p with a mixture of ligands that have been interpreted as results of the enzymatic reaction. The crystal structures of both enzymes contains in the asymmetric unit a biologically relevant dimer of 55?kDa for CaAro8 and 59?kDa for CaAro9p protein subunits. The ability of the enzymes to process multiple substrates could be related to a feature of their architecture in which the active site resides on one subunit while the substrate-binding site is formed by a long loop extending from the other subunit of the dimeric molecule. The separation of the two functions to different chemical entities could facilitate the evolution of the substrate-binding part and allow it to be flexible without destabilizing the conservative catalytic mechanism.  相似文献   

7.
We report the crystal structure of alanine racemase from Mycobacterium tuberculosis (Alr(Mtb)) at 1.9 A resolution. In our structure, Alr(Mtb) is found to be a dimer formed by two crystallographically different monomers, each comprising 384 residues. The domain makeup of each monomer is similar to that of Bacillus and Pseudomonas alanine racemases and includes both an alpha/beta-barrel at the N-terminus and a C-terminus primarily made of beta-strands. The hinge angle between these two domains is unique for Alr(Mtb), but the active site geometry is conserved. In Alr(Mtb), the PLP cofactor is covalently bound to the protein via an internal aldimine bond with Lys42. No guest substrate is noted in its active site, although some residual electron density is observed in the enzyme's active site pocket. Analysis of the active site pocket, in the context of other known alanine racemases, allows us to propose the inclusion of conserved residues found at the entrance to the binding pocket as additional targets in ongoing structure-aided drug design efforts. Also, as observed in other alanine racemase structures, PLP adopts a conformation that significantly distorts the planarity of the extended conjugated system between the PLP ring and the internal aldimine bond.  相似文献   

8.
《Journal of molecular biology》2019,431(24):4868-4881
Staphyloferrin B is a hydroxycarboxylate siderophore that is crucial for the invasion and virulence of Staphylococcus aureus in mammalian hosts where free iron ions are scarce. The assembly of staphyloferrin B involves four enzymatic steps, in which SbnH, a pyridoxal 5′-phosphate (PLP)-dependent decarboxylase, catalyzes the second step. Here, we report the X-ray crystal structures of S. aureus SbnH (SaSbnH) in complex with PLP, citrate, and the decarboxylation product citryl-diaminoethane (citryl-Dae). The overall structure of SaSbnH resembles those of the previously reported PLP-dependent amino acid decarboxylases, but the active site of SaSbnH showed unique structural features. Structural and mutagenesis analysis revealed that the citryl moiety of the substrate citryl-l-2,3-diaminopropionic acid (citryl-l-Dap) inserts into a narrow groove at the dimer interface of SaSbnH and forms hydrogen bonding interactions with both subunits. In the active site, a conserved lysine residue forms an aldimine linkage with the cofactor PLP, and a phenylalanine residue is essential for accommodating the l-configuration Dap of the substrate. Interestingly, the freestanding citrate molecule was found to bind to SaSbnH in a conformation inverse to that of the citryl group of citryl-Dae and efficiently inhibit SaSbnH. As an intermediate in the tricarboxylic acid (TCA) cycle, citrate is highly abundant in bacterial cells until iron depletion; thus, its inhibition of SaSbnH may serve as an iron-dependent regulatory mechanism in staphyloferrin B biosynthesis.  相似文献   

9.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to form glycine and single carbon groups that are essential for many biosynthetic pathways. SHMT requires both pyridoxal phosphate (PLP) and tetrahydropteroylpolyglutamate (H4PteGlun) as cofactors, the latter as a carrier of the single carbon group. We describe here the crystal structure at 2.8 A resolution of rabbit cytosolic SHMT (rcSHMT) in two forms: one with the PLP covalently bound as an aldimine to the Nepsilon-amino group of the active site lysine and the other with the aldimine reduced to a secondary amine. The rcSHMT structure closely resembles the structure of human SHMT, confirming its similarity to the alpha-class of PLP enzymes. The structures reported here further permit identification of changes in the PLP group that accompany formation of the geminal diamine complex, the first intermediate in the reaction pathway. On the basis of the current mechanism derived from solution studies and the properties of site mutants, we are able to model the binding of both the serine substrate and the H4PteGlun cofactor. This model explains the properties of several site mutants of SHMT and offers testable hypotheses for a more detailed mechanism of this enzyme.  相似文献   

10.
LeMagueres P  Im H  Dvorak A  Strych U  Benedik M  Krause KL 《Biochemistry》2003,42(50):14752-14761
The structure of the catabolic alanine racemase, DadX, from the pathogenic bacterium Pseudomonas aeruginosa, reported here at 1.45 A resolution, is a dimer in which each monomer is comprised of two domains, an eight-stranded alpha/beta barrel containing the PLP cofactor and a second domain primarily composed of beta-strands. The geometry of each domain is very similar to that of Bacillus stearothermophilus alanine racemase, but the rotation between domains differs by about 15 degrees. This change does not alter the structure of the active site in which almost all residues superimpose well with a low rms difference of 0.86 A. Unexpectedly, the active site of DadX contains a guest substrate that is located where acetate and propionate have been observed in the Bacillus structures. It is modeled as d-lysine and oriented such that its terminal NZ atom makes a covalent bond with C4' of PLP. Since the internal aldimine bond between the protein lysine, Lys33, and C4' of PLP is also unambiguously observed, there appears to be an equilibrium between both internally and externally reacted forms. The PLP cofactor adopts two partially occupied conformational states that resemble previously reported internal and external aldimine complexes.  相似文献   

11.
Griswold WR  Fisher AJ  Toney MD 《Biochemistry》2011,50(26):5918-5924
The 1.8 ? resolution crystal structures of Escherichia coli aspartate aminotransferase reconstituted with 1-deazapyridoxal 5'-phosphate (deazaPLP; 2-formyl-3-hydroxy-4-methylbenzyl phosphate) in the internal aldimine and L-aspartate external aldimine forms are reported. The L-aspartate·deazaPLP external aldimine is extraordinarily stable (half-life of >20 days), allowing crystals of this intermediate to be grown by cocrystallization with L-aspartate. This structure is compared to that of the α-methyl-L-aspartate·PLP external aldimine. Overlays with the corresponding pyridoxal 5'-phosphate (PLP) aldimines show very similar orientations of deazaPLP with respect to PLP. The lack of a hydrogen bond between Asp222 and deazaPLP, which serves to "anchor" PLP in the active site, releases strain in the deazaPLP internal aldimine that is enforced in the PLP internal aldimine [Hayashi, H., Mizuguchi, H., Miyahara, I., Islam, M. M., Ikushiro, H., Nakajima, Y., Hirotsu, K., and Kagamiyama, H. (2003) Biochim. Biophys. Acta1647, 103] as evidenced by the planarity of the pyridine ring and the Schiff base linkage with Lys258. Additionally, loss of this anchor causes a 10° greater tilt of deazaPLP toward the substrate in the external aldimine. An important mechanistic difference between the L-aspartate·deazaPLP and α-methyl-L-aspartate·PLP external aldimines is a hydrogen bond between Gly38 and Lys258 in the former, positioning the catalytic base above and approximately equidistant between Cα and C4'. In contrast, in the α-methyl-L-aspartate·PLP external aldimine, the ε-amino group of Lys258 is rotated ~70° to form a hydrogen bond to Tyr70 because of the steric bulk of the methyl group.  相似文献   

12.
The biosynthesis of histidine is a central metabolic process in organisms ranging from bacteria to yeast and plants. The seventh step in the synthesis of histidine within eubacteria is carried out by a pyridoxal-5'-phosphate (PLP)-dependent l-histidinol phosphate aminotransferase (HisC, EC 2.6.1.9). Here, we report the crystal structure of l-histidinol phosphate aminotransferase from Escherichia coli, as a complex with pyridoxamine-5'-phosphate (PMP) at 1.5 A resolution, as the internal aldimine with PLP, and in a covalent, tetrahedral complex consisting of PLP and l-histidinol phosphate attached to Lys214, both at 2.2 A resolution. This covalent complex resembles, in structural terms, the gem-diamine intermediate that is formed transiently during conversion of the internal to external aldimine.HisC is a dimeric enzyme with a mass of approximately 80 kDa. Like most PLP-dependent enzymes, each HisC monomer consists of two domains, a larger PLP-binding domain having an alpha/beta/alpha topology, and a smaller domain. An N-terminal arm contributes to the dimerization of the two monomers. The PLP-binding domain of HisC shows weak sequence similarity, but significant structural similarity with the PLP-binding domains of a number of PLP-dependent enzymes. Residues that interact with the PLP cofactor, including Tyr55, Asn157, Asp184, Tyr187, Ser213, Lys214 and Arg222, are conserved in the family of aspartate, tyrosine and histidinol phosphate aminotransferases. The imidazole ring of l-histidinol phosphate is bound, in part, through a hydrogen bond with Tyr110, a residue that is substituted by Phe in the broad substrate specific HisC enzymes from Zymomonas mobilis and Bacillus subtilis.Comparison of the structures of the HisC internal aldimine, the PMP complex and the HisC l-histidinol phosphate complex reveal minimal changes in protein or ligand structure. Proton transfer, required for conversion of the gem-diamine to the external aldimine, does not appear to be limited by the distance between substrate and lysine amino groups. We propose that the tetrahedral complex has resulted from non-productive binding of l-histidinol phosphate soaked into the HisC crystals, resulting in its inability to be converted to the external aldimine at the HisC active site.  相似文献   

13.
l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5′-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.  相似文献   

14.
5-Aminolevulinate synthase (EC 2.3.1.37) (ALAS), a pyridoxal 5′-phosphate (PLP)-dependent enzyme, catalyzes the initial step of heme biosynthesis in animals, fungi, and some bacteria. Condensation of glycine and succinyl coenzyme A produces 5-aminolevulinate, coenzyme A, and carbon dioxide. X-ray crystal structures of Rhodobacter capsulatus ALAS reveal that a conserved active site serine moves to within hydrogen bonding distance of the phenolic oxygen of the PLP cofactor in the closed substrate-bound enzyme conformation and within 3–4 Å of the thioester sulfur atom of bound succinyl-CoA. To evaluate the role(s) of this residue in enzymatic activity, the equivalent serine in murine erythroid ALAS was substituted with alanine or threonine. Although both the KmSCoA and kcat values of the S254A variant increased, by 25- and 2-fold, respectively, the S254T substitution decreased kcat without altering KmSCoA. Furthermore, in relation to wild-type ALAS, the catalytic efficiency of S254A toward glycine improved ∼3-fold, whereas that of S254T diminished ∼3-fold. Circular dichroism spectroscopy revealed that removal of the side chain hydroxyl group in the S254A variant altered the microenvironment of the PLP cofactor and hindered succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon 5-aminolevulinate binding demonstrated that the protein conformational transition step associated with product release was predominantly affected. We propose the following: 1) Ser-254 is critical for formation of a competent catalytic complex by coupling succinyl-CoA binding to enzyme conformational equilibria, and 2) the role of the active site serine should be extended to the entire α-oxoamine synthase family of PLP-dependent enzymes.  相似文献   

15.
Chiral amines are important building blocks for the synthesis of pharmaceutical products, fine chemicals, and agrochemicals. ω-Transaminases are able to directly synthesize enantiopure chiral amines by catalysing the transfer of an amino group from a primary amino donor to a carbonyl acceptor with pyridoxal 5′-phosphate (PLP) as cofactor. In nature, (S)-selective amine transaminases are more abundant than the (R)-selective enzymes, and therefore more information concerning their structures is available. Here, we present the crystal structure of an (R)-ω-transaminase from Aspergillus terreus determined by X-ray crystallography at a resolution of 1.6 Å. The structure of the protein is a homodimer that displays the typical class IV fold of PLP-dependent aminotransferases. The PLP-cofactor observed in the structure is present in two states (i) covalently bound to the active site lysine (the internal aldimine form) and (ii) as substrate/product adduct (the external aldimine form) and free lysine. Docking studies revealed that (R)-transaminases follow a dual binding mode, in which the large binding pocket can harbour the bulky substituent of the amine or ketone substrate and the α-carboxylate of pyruvate or amino acids, and the small binding pocket accommodates the smaller substituent.  相似文献   

16.
Kezuka Y  Yoshida Y  Nonaka T 《Proteins》2012,80(10):2447-2458
Hydrogen sulfide (H2S) is a causative agent of oral malodor and may play an important role in the pathogenicity of oral bacteria such as Streptococcus anginosus. In this microorganism, H2S production is associated with βC‐S lyase (Lcd) encoded by lcd gene, which is a pyridoxal 5′‐phosphate (PLP)‐dependent enzyme that catalyzes the α,β‐elimination of sulfur‐containing amino acids. When Lcd acts on L ‐cysteine, H2S is produced along with pyruvate and ammonia. To understand the H2S‐producing mechanism of Lcd in detail, we determined the crystal structures of substrate‐free Lcd (internal aldimine form) and two reaction intermediate complexes (external aldimine and α‐aminoacrylate forms). The formation of intermediates induced little changes in the overall structure of the enzyme and in the active site residues, with the exception of Lys234, a PLP‐binding residue. Structural and mutational analyses highlighted the importance of the active site residues Tyr60, Tyr119, and Arg365. In particular, Tyr119 forms a hydrogen bond with the side chain oxygen atom of L ‐serine, a substrate analog, in the external aldimine form suggesting its role in the recognition of the sulfur atom of the true substrate (L ‐cysteine). Tyr119 also plays a role in fixing the PLP cofactor at the proper position during catalysis through binding with its side chain. Finally, we partly modified the catalytic mechanism known for cystalysin, a βC‐S lyase from Treponema denticola, and proposed an improved mechanism, which seems to be common to the βC‐S lyases from oral bacteria. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal 5′-phosphate (PLP)-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the reverse transsulfuration pathway. Residue S289 of yeast CBS, predicted to form a hydrogen bond with the pyridine nitrogen of the PLP cofactor, was mutated to alanine and aspartate. The kcat/Kml-Ser of the S289A mutant is reduced by a factor of ~ 800 and the β-replacement activity of the S289D mutant is undetectable. Fluorescence energy transfer between tryptophan residue(s) of the enzyme and the PLP cofactor, observed in the wild-type enzyme and diminished in the S289A mutant, is absent in S289D. These results demonstrate that residue S289 is essential in maintaining the properties and orientation of the pyridine ring of the PLP cofactor. The reduction in activity of ytCBS-S289A suggests that ytCBS catalyzes the α,β-elimination of l-Ser via an E1cB mechanism.  相似文献   

18.
2-Amino-3-ketobutyrate CoA ligase (KBL, EC 2.3.1.29) is a pyridoxal phosphate (PLP) dependent enzyme, which catalyzes the second reaction step on the main metabolic degradation pathway for threonine. It acts in concert with threonine dehydrogenase and converts 2-amino-3-ketobutyrate, the product of threonine dehydrogenation by the latter enzyme, with the participation of cofactor CoA, to glycine and acetyl-CoA. The enzyme has been well conserved during evolution, with 54% amino acid sequence identity between the Escherichia coli and human enzymes. We present the three-dimensional structure of E. coli KBL determined at 2.0 A resolution. KBL belongs to the alpha family of PLP-dependent enzymes, for which the prototypic member is aspartate aminotransferase. Its closest structural homologue is E. coli 8-amino-7-oxononanoate synthase. Like many other members of the alpha family, the functional form of KBL is a dimer, and one such dimer is found in the asymmetric unit in the crystal. There are two active sites per dimer, located at the dimer interface. Both monomers contribute side chains to each active/substrate binding site. Electron density maps indicated the presence in the crystal of the Schiff base intermediate of 2-amino-3-ketobutyrate and PLP, an external aldimine, which remained bound to KBL throughout the protein purification procedure. The observed interactions between the aldimine and the side chains in the substrate binding site explain the specificity for the substrate and provide the basis for a detailed proposal of the reaction mechanism of KBL. A putative binding site of the CoA cofactor was assigned, and implications for the cooperation with threonine dehydrogenase were considered.  相似文献   

19.
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.  相似文献   

20.
Treponema denticola cystalysin is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the alpha,beta-elimination of l-cysteine to pyruvate, ammonia, and H2S. Similar to other PLP enzymes, an active site Lys residue (Lys-238) forms an internal Schiff base with PLP. The mechanistic role of this residue has been studied by an analysis of the mutant enzymes in which Lys-238 has been replaced by Ala (K238A) and Arg (K238R). Both apomutants reconstituted with PLP bind noncovalently approximately 50% of the normal complement of the cofactor and have a lower affinity for the coenzyme than that of wild-type. Kinetic analyses of the reactions of K238A and K238R mutants with glycine compared with that of wild-type demonstrate the decrease of the rate of Schiff base formation by 103- and 7.5 x 104-fold, respectively, and, to a lesser extent, a decrease of the rate of Schiff base hydrolysis. Thus, a role of Lys-238 is to facilitate formation of external aldimine by transimination. Kinetic data reveal that the K238A mutant is inactive in the alpha,beta-elimination of l-cysteine and beta-chloro-l-alanine, whereas K238R retains 0.3% of the wild-type activity. These data, together with those derived from a spectral analysis of the reaction of Lys-238 mutants with unproductive substrate analogues, indicate that Lys-238 is an essential catalytic residue, possibly participating as a general base abstracting the Calpha-proton from the substrate and possibly as a general acid protonating the beta-leaving group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号