首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high‐density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long‐term dynamic characteristics and functional information.  相似文献   

2.
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13‐year consecutive multi‐level N addition experiment in a semiarid steppe, we partitioned community β‐diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β‐diversity increased, but their two components showed different patterns with increasing N input. Plant β‐diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β‐diversity would have important implications for understanding plant–soil microbe interactions and seeking conservation strategies for maintaining regional diversity.  相似文献   

3.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

4.
Aim We tested whether the geographic variation in the proportion of beta diversity attributed to nestedness or turnover components was explained by the effect of past glaciation events. Specifically, we tested the hypothesis that most of the beta diversity in regions retaining ice until recent periods was due to nestedness. Additionally, we tested whether the variation was influenced by thermal tolerance and the dispersal ability of species. Location This study analysed data from the New World. Methods We used presence/absence data for amphibians, birds and mammals of the New World. We calculated beta diversity among each 1°× 1° cell and the adjacent cells using the Sorensen dissimilarity index that expresses the total beta diversity. Furthermore, we partitioned it into turnover and nestedness components. The relative importance of the two latter components was expressed as the proportion of total beta diversity explained by nestedness (βratio). We calculated the correlation between βratio and the time each cell was free of ice since the last glaciation (cell age). To control the effects of spatial autocorrelation, we calculated geographically effective degrees of freedom. Results The proportion of beta diversity attributed to nestedness was negatively correlated with cell age. Moreover, this effect was stronger for amphibians than mammals, and stronger for mammals than birds. Main conclusions Our results are in accordance with the hypothesis that the nestedness component of beta diversity is more important in areas affected by glaciations until recent time. The beta diversity in high latitudes is the result of past extinctions and recent recolonization, which result in higher levels of nestedness. This process is more evident for vertebrates with lower dispersal ability and lower temperature tolerance.  相似文献   

5.
β‐Diversity, which describes the extent of change in species composition in a given region, has become a core issue in ecology in recent years. However, it is hard to understand the underlying mechanisms of β‐diversity by using indices that yield identical values under species replacement and nestedness pattern. Partitioning β‐diversity into turnover (caused by species replacement among plots) and nestedness components (caused by species loss or gain among plots) may provide improved understanding of the variation in species composition. Here, we collected presence–absence data of 456 one‐tenth ha circular plots in the temperate forests of Northeastern China spanning a latitudinal range of 12° (41–53°N). We decomposed β‐diversity to assess the relative contribution of the turnover and nestedness components across latitudinal gradients. We used regression analysis to assess the relationship between spatial distance and β‐diversity. We applied variation partitioning to evaluate the importance of the measured environmental and spatial variables in explaining β‐diversity. We used the Tukey honest significant difference test to test the differences of β‐diversity along latitudinal gradients. Pearson correlations (r) and significance (p‐value) were computed using the Mantel tests to verify the relationship between distance and β‐diversity. The ANOVA test was used to verify whether the variation of β‐diversity explained by the environment and distance was significant. Our results showed that (1) β‐diversity and the turnover component were higher at low latitudes (zones A and B) than at high latitudes (zones C and D), while there was no relationship between the nestedness component and latitude. (2) The turnover component was dominant. (3) The spatial distance explained more variation of β‐diversity than the measured environmental factors. Therefore, we conclude that β‐diversity is mainly a product of species turnover in our temperate forests, suggesting that different localities harbor different species. We find that decomposing β‐diversity into the turnover and nestedness components is a useful approach to explore the variation of community composition and their causes.  相似文献   

6.

Aim

The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity.

Location

Global.

Time period

1968–2017.

Major taxa studied

From bacteria to mammals.

Methods

From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site beta‐diversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta‐regression tool to analyse the data.

Results

Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta‐diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta‐diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores.

Main conclusions

The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta‐diversity components had generally opposing patterns with regard to latitude. We highlight that beta‐diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone.  相似文献   

7.
Baselga [Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19 , 134–143, 2010] proposed pairwise (βnes) and multiple‐site (βNES) beta‐diversity measures to account for the nestedness component of beta diversity. We used empirical, randomly created and idealized matrices to show that both measures are only partially related to nestedness and do not fit certain fundamental requirements for consideration as true nestedness‐resultant dissimilarity measures. Both βnes and βNES are influenced by matrix size and fill, and increase or decrease even when nestedness remains constant. Additionally, we demonstrate that βNES can yield high values even for matrices with no nestedness. We conclude that βnes and βNES are not true measures of the nestedness‐resultant dissimilarity between sites. Actually, they quantify how differences in species richness that are not due to species replacement contribute to patterns of beta diversity. Finally, because nestedness is a special case of dissimilarity in species composition due to ordered species loss (or gain), the extent to which differences in species composition is due to nestedness can be measured through an index of nestedness.  相似文献   

8.
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.  相似文献   

9.
β‐Diversity, commonly defined as the compositional variation among localities that links local diversity (α‐diversity) and regional diversity (γ‐diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying stream β‐diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence‐absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on the β‐diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa on β‐diversity.  相似文献   

10.
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.  相似文献   

11.
理解沿环境或空间梯度的群落组成变化(即beta多样性)一直是生态学和保护生物学的中心问题, 且beta多样性的形成机制及其对环境的响应已成为当前生物多样性研究的热点问题。本文以西藏横断山区怒江和澜沧江两个流域入江溪流中的细菌为研究对象, 使用Baselga的beta多样性分解方法, 基于Sørensen相异性指数将细菌的beta多样性分解为周转(turnover)和嵌套(nestedness)两个组分, 探究了细菌beta多样性及其分解组分随海拔距离的分布模式, 并且衡量了环境、气候和空间因子的相对重要性。结果表明, 两个流域中细菌的群落结构显著不同。两个流域的细菌总beta多样性和周转组分随海拔距离的增加而增加, 周转组分占总beta多样性的比例较大。气候和环境因子是两个流域中细菌总beta多样性及周转过程的重要预测因子, 并且所有的显著因子均为正相关, 其中环境因子中相关性最高的为海拔距离(R 2= 0.408, P < 0.001), 而气候因子中相关性最高的为年均温差(R 2= 0.417, P < 0.001)。方差分解结果暗示嵌套组分主要受空间扩散的影响; 总beta多样性和周转组分在环境较恶劣的澜沧江主要受环境过滤的影响, 而在环境较温和的怒江主要受空间扩散和环境过滤的共同影响。此外, 较为恶劣的环境条件会增加细菌的总beta多样性和周转率, 并且会形成更强的环境筛选作用去影响细菌群落的物种组成。我们的研究表明对西藏横断山区水体细菌多样性的保护需要从整个流域入手, 而非少量的生物多样性热点地区。  相似文献   

12.
Advances in metacommunity theory have made a significant contribution to understanding the drivers of variation in biological communities. However, there has been limited empirical research exploring the expression of metacommunity theory for two fundamental components of beta diversity: nestedness and species turnover. In this paper, we examine the influence of local environmental and a range of spatial variables (hydrological connectivity, proximity and overall spatial structure) on total beta diversity and the nestedness and turnover components of beta diversity for the entire macroinvertebrate community and active and passively dispersing taxa within pond habitats. High beta diversity almost entirely reflects patterns of species turnover (replacement) rather than nestedness (differences in species richness) in our dataset. Local environmental variables were the main drivers of total beta diversity, nestedness and turnover when the entire community was considered and for both active and passively dispersing taxa. The influence of spatial processes on passively dispersing taxa, total beta diversity and nestedness was significantly greater than for actively dispersing taxa. Our results suggest that species sorting (local environmental variables) operating through niche processes was the primary mechanism driving total beta diversity, nestedness and turnover for the entire community and active and passively dispersing taxa. In contrast, spatial factors (hydrological connectivity, proximity and spatial eigenvectors) only exerted a secondary influence on the nestedness and turnover components of beta diversity.  相似文献   

13.
14.
Beta diversity and nestedness are central concepts of ecology and biogeography and evaluation of their relationships is in the focus of contemporary ecological and conservation research. Beta diversity patterns are originated from two distinct processes: the replacement (or turnover) of species and the loss (or gain) of species leading to richness differences. Nested distributional patterns are generally thought to have a component deriving from beta diversity which is independent of replacement processes. Quantification of these phenomena is often made by calculating a measure of beta diversity, and the resulting value being subsequently partitioned into a contribution by species replacement plus a fraction shared by beta diversity and nestedness. Three methods have been recently proposed for such partitioning, all of them based on pairwise comparisons of sites. In this paper, the performance of these methods was evaluated on theoretical grounds and tested by a simulation study in which different gradients of dissimilarity, with known degrees of species replacement and species loss, were created. Performance was also tested using empirical data addressing land‐use induced changes in endemic arthropod communities of the Terceira Island in the Azores. We found that the partitioning of βcc (dissimilarity in terms of the Jaccard index) into two additive fractions, β‐3 (dissimilarity due to species replacement) plus βrich (dissimilarity due to richness differences) reflects the species replacement and species loss processes across the simulated gradients in an ecologically and mathematically meaningful way, whilst the other two methods lack mathematical consistency and prove conceptually self‐contradictory. Moreover, the first method identified a selective local extinction process for endemic arthropods, triggered by land‐use changes, while the latter two methods overweighted the replacement component and led to false conclusions. Their basic flaw derives from the fact that the proposed replacement and nestedness components (deemed to account for species loss) are not scaled in the same way as the measure that accounts for the total dissimilarity (Sørensen and Jaccard indices). We therefore recommend the use of βcc‐3rich, since its components are scaled in the same units and their responses are proportional to the replacement and the gain/loss of species.  相似文献   

15.
Aim Several lines of evidence suggest that beta diversity, or dissimilarity in species composition, should increase with productivity: (1) the latitudinal species richness gradient is most closely related to productivity and associated latitudinal beta‐diversity relationships have been described, and (2) the scale dependence of the productivity–diversity relationship implies that there should be a positive productivity–beta‐diversity relationship. However, such a pattern has not yet been demonstrated at broad scales. We test if there is a gradient of increasing beta diversity with productivity. Location Canada. Methods Canada was clustered into regions of similar productivity regimes along three remotely sensed productivity axes (minimum and integrated annual productivity, seasonality of productivity) and elevation. The overall (βj), turnover (βsim) and nestedness (βnes) components of beta diversity within each productivity regime were estimated with pairwise dissimilarity metrics and related to cluster productivity with partial linear regression and with spatial autoregression. Tests were performed for all species, productivity breadth‐based subsets (e.g. species occurring in many and a moderate number of productivity regimes), and pre‐ and post‐1970 butterfly records. Beta diversity between adjacent clusters along the productivity gradients was also evaluated. Results Within‐cluster βj and βsim increased with productivity and decreased with seasonality. The converse was true for βnes. All species subsets responded similarly; however, productivity–beta‐diversity relationships were weaker for the post‐1970 temporal subset and strongest for species of moderate breadth. Between‐cluster beta diversity (βj) and nestedness (βnes) declined with productivity. Main conclusions As predicted, beta diversity of communities within productivity regimes was observed to increase with productivity. This pattern was driven largely by a gradient of species turnover. Therefore, beta diversity may make an important contribution to the broad‐scale gradient of species richness with productivity. However, this species richness gradient dominates regional beta diversity between productivity regimes, resulting in decreasing between‐productivity dissimilarity with productivity driven by a concurrent decline in nestedness.  相似文献   

16.
Understanding the underlying mechanisms causing diversity patterns is a fundamental objective in ecology and science‐based conservation biology. Energy and environmental‐heterogeneity hypotheses have been suggested to explain spatial changes in ant diversity. However, the relative roles of each one in determining alpha and beta diversity patterns remain elusive. We investigated the main factors driving spatial changes in ant (Hymenoptera, Formicidae) species richness and composition (including turnover and nestedness components) along a 500 km longitudinal gradient in the Pampean region of Argentina. Ants were sampled using pitfall traps in 12 sample sites during the summer. We performed a model selection approach to analyse responses of ant richness and composition dissimilarity to environmental factors. Then, we computed a dissimilarity partitioning of the contributions of spatial turnover and nestedness to total composition dissimilarity. Temporal habitat heterogeneity and temperature were the primary factors explaining spatial patterns of epigean ant species richness across the Pampas. The distance decay in species composition similarity was best accounted by temperature dissimilarity, and turnover had the greatest contribution to the observed beta diversity pattern. Our findings suggest that both energy and environmental‐heterogeneity‐related variables are key factors shaping richness patterns of ants and niche‐based processes instead of neutral processes appear to be regulating species composition of ant assemblages. The major contribution of turnover to the beta diversity pattern indicated that lands for potential reconversion to grassland should represent the complete environmental gradient of the Pampean region, instead of prioritizing a single site with high species richness.  相似文献   

17.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:2,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

18.
Multiple-site dissimilarity may be caused by two opposite processes of meta-community organization, such as species nestedness and turnover. Therefore, discriminating among these contributions is necessary for linking multiple-site dissimilarity to ecosystem functioning. This paper introduces a measure of multiple-site dissimilarity or beta diversity for presence/absence data that is based on information on species absences from the species × sites matrix. It is also shown that the newly proposed dissimilarity index can be additively partitioned into species nestedness and turnover.  相似文献   

19.
Temporary pools are seasonal wetland habitats with specifically adapted biota, including annual Nothobranchius killifishes that survive habitat desiccation as diapausing eggs encased in dry sediment. To understand the patterns in the structure of Nothobranchius assemblages and their potential in wetland conservation, we compared biodiversity components (alpha, beta, and gamma) between regions and estimated the role and sources of nestedness and turnover on their diversity. We sampled Nothobranchius assemblages from 127 pools across seven local regions in lowland Eastern Tanzania over 2 years, using dip net and seine nets. We estimated species composition and richness for each pool, and beta and gamma diversity for each region. We decomposed beta diversity into nestedness and turnover components. We tested nestedness in three main regions (Ruvu, Rufiji, and Mbezi) using the number of decreasing fills metric and compared the roles of pool area, isolation, and altitude on nestedness. A total of 15 species formed assemblages containing 1–6 species. Most Nothobranchius species were endemic to one or two adjacent regions. Regional diversity was highest in the Ruvu, Rufiji, and Mbezi regions. Nestedness was significant in Ruvu and Rufiji, with shared core (Nmelanospilus, Neggersi, and Njanpapi) and common (N. ocellatus and Nannectens) species, and distinctive rare species. Nestedness apparently resulted from selective colonization rather than selective extinction, and local species richness was negatively associated with altitude. The Nothobranchius assemblages in the Mbezi region were not nested, and had many endemic species and the highest beta diversity driven by species turnover. Overall, we found unexpected local variation in the sources of beta diversity (nestedness and turnover) within the study area. The Mbezi region contained the highest diversity and many endemic species, apparently due to repeated colonizations of the region rather than local diversification. We suggest that annual killifish can serve as a flagship taxon for small wetland conservation.  相似文献   

20.
群落β多样性格局的形成与维持机制一直是群落生态学研究的热点与核心。然而, 与陆生生态系统相比, 海洋生态系统尤其是海洋底栖生态系统中生物群落β多样性的研究明显滞后。本研究从分类(即物种组成)和功能(即性状组成)两个方面出发, 应用Mantel分析和基于矩阵的多元回归(multiple regression on distance matrices, MRM)分析, 探究了莱州湾东岸潮下带大型底栖动物群落β多样性及其周转(turnover)和嵌套(nestedness)组分与环境因子和空间距离的关系, 揭示了环境过滤和扩散限制两种生态学过程对其群落构建机制的影响。结果显示: (1)莱州湾东岸潮下带大型底栖动物群落的分类与功能性状β多样性均维持在较高水平且均以周转组分占主导, 表明研究区域大型底栖动物群落在物种和功能性状组成上差异较大, 而这种差异大部分来自物种或功能性状在空间或群落间的更替; (2)空间地理距离对大型底栖动物群落分类与功能性状β多样性及其组分无显著影响(Mantel检验, P > 0.05), 表明扩散限制对莱州湾东岸潮下带大型底栖动物群落的影响有限; (3) MRM分析表明, 沉积物总有机质(total organic matter, TOM)和粉砂含量显著影响大型底栖动物群落分类β多样性, 而TOM则显著影响功能性状β多样性。上述结果表明, 环境过滤是驱动莱州湾东岸潮下带大型底栖动物群落构建机制的首要因素。本研究阐明了莱州湾东岸潮下带大型底栖动物群落构建机制, 同时也为理解我国其他海域大型底栖动物群落的形成与维持机制提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号