首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A R Zuberi  C Ying  D S Bischoff  G W Ordal 《Gene》1991,101(1):23-31
The nucleotide sequence of five genes from the major Bacillus subtilis chemotaxis locus has been determined. Four of these genes encode proteins that are homologous to the Salmonella typhimurium FlgB, FlgC, FlgG and FliF proteins. One gene encodes a protein that is homologous to the Escherichia coli FliE protein. The data from S. typhimurium and E. coli suggest that all of these proteins form part of the hook-basal body (HBB) complex of the bacterial flagella. The FlgB, FlgC and FlgG proteins are components of the proximal and distal rods. The FliF protein forms the M-ring that anchors the rod assembly to the membrane. The role of the FliE protein within the HBB complex has not yet been determined. The similarity between the B. subtilis and S. typhimurium proteins suggests that the structure of the M-ring and the rod may be similar in the two species. However, we observed some differences in size and amino acid composition between some of the corresponding homologues that suggest the basal body proteins may be organized slightly differently within B. subtilis.  相似文献   

2.
The flagellar basal body of Salmonella typhimurium consists of four rings surrounding a rod. The rod, which is believed to transmit motor rotation to the filament, is not well characterized in terms of its structure and composition. FlgG is known to lie within the distal portion of the rod, in the region where it is surrounded by the L and P rings, just before the rod-hook junction. The FlgC and FlgF proteins are also known to be flagellar basal-body components; by comparison of deduced and experimental N-terminal amino acid sequences we show here that FlgB is a basal-body protein. The flgB, flgC, flgF and flgG gene sequences and the deduced protein sequences are presented. The four proteins are clearly related to each other in primary sequence, especially toward the N and C termini, supporting the hypothesis (based on examination of basal-body subfractions) that FlgB, FlgC and FlgF are, like FlgG, rod proteins. From this and other information we suggest that the rod is the cell-proximal part of a segmented axial structure of the flagellum, with FlgB, FlgC and FlgF located (in unknown order) in successive segments of the proximal rod, followed by FlgG located in the distal rod; the axial structure then continues with the hook, HAPs and filament. Although the rod is external to the cell membrane, none of the four rod proteins contains a consensus signal sequence for the primary export pathway; comparison with the experimentally determined N-terminal amino acid sequence indicates that FlgB has had its N-terminal methionine removed, while the other three are not processed at all. This demonstrates that these proteins are not exported by the primary cellular pathway, and suggests that they are exported by the same flagellum-specific pathway as the flagellar filament protein flagellin. The observed sequence similarities among the rod proteins, especially a six-residue consensus motif about 30 residues in from the N terminus, may constitute a recognition signal for this pathway or they may reflect higher-order structural similarities within the rod.  相似文献   

3.
The bacterial flagellar basal body is a rotary motor. It spans the cytoplasmic and outer membranes and drives rapid rotation of a long helical filament in the cell exterior. The flagellar rod at its central axis is a drive shaft that transmits torque through the hook to the filament to propel the bacterial locomotion. To study the structure of the rod in detail, we have established purification procedures for Salmonella rod proteins, FlgB, FlgC, FlgF, FlgG, and also for FliE, a rod adapter protein, from an Escherichia coli expression system. While FlgF was highly soluble, FlgB, FlgC, FlgG and FliE tended to self or cross-aggregate into fibrils in solutions at neutral pH or below, at high ionic strength, or at high protein concentration. These aggregates were characterized to be beta-amyloid fibrils, unrelated to the rod structure formed in vivo. Under non-aggregative conditions, no protein-protein interactions were detected between any pairs of these five proteins, suggesting that their spontaneous, template-free polymerization is strongly suppressed. Limited proteolyses showed that FlgF and FlgG have natively unfolded N and C-terminal regions of about 100 residues in total just as flagellin does, whereas FlgB, FlgC and FliE, which are little over 100 residues long, are unfolded in their entire peptide chains. These results together with other data indicate that all of the ten flagellar axial proteins share structural characteristics and folding dynamics in relation to the mechanism of their self-assembly into the flagellar axial structure.  相似文献   

4.
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.  相似文献   

5.
Morphological pathway of flagellar assembly in Salmonella typhimurium.   总被引:14,自引:0,他引:14  
The process of flagellar assembly was investigated in Salmonella typhimurium. Seven types of flagellar precursors produced by various flagellar mutants were purified by CsCl density gradient protocol. They were characterized morphologically by electron microscopy, and biochemically by two-dimensional gel electrophoresis. The MS ring is formed in the absence of any other flagellar components, including the switch complex and the putative export apparatus. Four proteins previously identified as rod components, FlgB, FlgC, FlgF, FlgG, and another protein, FliE, assemble co-operatively into a stable structure. The hook is formed in two distinct steps; formation of its proximal part and elongation. Proximal part formation occurs, but elongation does not occur, in the absence of the LP ring. FlgD is necessary for hook formation, but not for LP-ring formation. A revised pathway of flagellar assembly is proposed based on these and other results.  相似文献   

6.
7.
The flagellar hook–basal body (HBB) complex of the Gram-positive bacterium Bacillus subtilis was purified and analysed by electron microscopy, gel electrophoresis, and amino acid sequencing of the major component proteins. The purified HBB complex consisted of the inner (M and S) rings, a rod and a hook. There were no outer (P and L) rings that are found in Gram-negative bacteria. The hook was 15 nm in thickness and 70 nm in length, which is thinner and longer than the hook of Salmonella typhimurium . The hook protein had an apparent molecular mass of 29 kDa, and its N-terminal sequence was identical to that of B. subtilis FlgG, which was previously reported as a rod protein. The sequence of the reported FlgG protein of B. subtilis is more closely related to that of FlgE (the hook protein) rather than FlgG (the rod protein) of S. typhimurium , in spite of the difference of the apparent molecular masses between the two hook proteins (29 kDa versus 42 kDa). The hook–basal body contained six major proteins (with apparent molecular masses of 82, 59, 35, 32, 29 and 20 kDa) and two minor proteins (23 kDa and 13 kDa), which consistently appeared from preparation to preparation. The N-terminus of each of these proteins was sequenced. Comparison with protein databases revealed the following polypeptide–gene correspondences: 82 kDa, fliF ; 59 kDa, flgK ; 35 kDa, orfF ; 32 kDa, yqhF ; 23 kDa, orf3 of the flaA locus; 20 kDa, flgB and flgC ; 13 kDa, not determined. The band at 20 kDa was a mixture of FlgB and FlgC, as revealed by two-dimensional gel analysis. Characteristic features of B. subtilis HBB are discussed in comparison with those of S. typhimiurium .  相似文献   

8.
The process of flagellar assembly in Salmonella typhimurium was investigated by using temperature-sensitive mutants. The mutants were grown at the restrictive temperature and then at the permissive temperature, with radiolabel supplied in the first phase of the experiment and not the second, or vice versa. Flagellar hook-basal body complexes were then purified and analyzed by gel electrophoresis and autoradiography. The extent to which a given protein was labeled in the two phases of the experiment provided information as to whether it preceded or followed the block caused by the mutant protein. We conclude the following concerning flagellar assembly. The M-ring protein (FliF) is stably incorporated in the earliest stage detected, along with two previously unknown proteins, with apparent molecular masses of 23 and 26 kilodaltons, respectively, and possibly one of the switch components, FliG. Independent of that event and all other events, the P-ring and L-ring proteins (FlgI and FlgH) are synthesized and exported to the periplasm and outer membrane by the primary cellular export pathway. Rod assembly occurs by export (via the flagellum-specific pathway) of subunits of four proteins, FlgB, FlgC, FlgF, and FlgG, and their incorporation, probably in that order, into the rod structure; this stage requires the flhA and fliI genes, perhaps because they encode part of the export apparatus. Once rod assembly is complete, the FlgI and FlgH proteins assemble around the rod to form the P and L rings. The rod structure, which is only metastable while it is being constructed, becomes stable upon P-ring addition. Export (via the flagellum-specific pathway) and assembly of hook protein, hook-associated proteins, and filament protein then occur successively. A number of flagellar proteins, whose genetic origin and structural role are not yet known, were identified on the basis of their dependence on the flagellar master operon for expression.  相似文献   

9.
10.
The C-terminal half of the Salmonella flagellar protein FlgJ has peptidoglycan hydrolyzing activity and it has been suggested that it is a flagellum-specific muramidase which locally digests the peptidoglycan layer to permit assembly of the rod structure to proceed through the periplasmic space. It was also suggested that FlgJ might be involved in rod formation itself, although there was no direct evidence for this. We purified basal body structures from SJW1437(flgJ) transformed with plasmids encoding various mutant FlgJ proteins and found that these basal bodies possessed the periplasmic P ring but lacked the outer membrane L ring; they also lacked a hook at their distal end. All of these mutant FlgJ proteins had an altered or missing C-terminal domain but had at least the first 151 amino acid residues of the N-terminal domain. Immunoblotting analysis of fractionated cell extracts revealed that a rod/hook export class protein, FlgD, was exported to the periplasm but not to the culture supernatant in these mutants. FlgJ was shown to physically interact with several proteins, and especially FliE and FlgB, which are believed to reside at the cell-proximal end of the rod. On the basis of these results, we conclude that the N-terminal 151 amino acid residues of FlgJ are directly involved in rod formation and that the muramidase activity of FlgJ, though needed for formation of the L ring and subsequent events such as hook formation, is not essential for rod or P ring formation. In contrast, muramidase activity alone does not support rod assembly.  相似文献   

11.
12.
The switch in export specificity of the type III flagellar protein export apparatus from rod/hook type to filament type is believed to occur upon completion of hook assembly by way of an interaction of the type III secretion substrate specificity switch (T3S4) domain of the hook-length control protein FliK, with the integral membrane export apparatus component FlhB. The T3S4 domain of FliK (FliKT3S4) consisting of amino acid residues 265-405 has an unstable and flexible conformation in its last 35 residues (FliKCT). To investigate the role of FliKT3S4 in substrate specificity switching, we studied the effect of deletions and point mutations within this domain and characterized suppressor mutations. Deletions of ten amino acid residues within the region of residues 301-350 and five amino acids of residues 401-405 abolished switching of export specificity. Site directed mutagenesis showed that highly conserved residues, Val302, Ile304, Leu335, Val401 and Ala405, are essential, and that the five C terminal residues (401-405) are restricted in conformation for the switching process. Suppressor mutant analysis of the fliK(S319Y) mutant, which produces extended hooks with filaments attached due to delayed switching, suggested that FliKT3S4 interacts with the C terminal half of the cytoplasmic domain of FlhB (FlhBC). We propose a two step binding model of FliKT3S4 and FlhBC, in which residues 301-350 of FliK bind to FlhBC upon hook assembly completion at about 55 nm, and then unfolded FliKCT binds to FlhBC to trigger the switch in substrate specificity.  相似文献   

13.
A remarkable feature of the flagellar‐specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook‐basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N‐terminal secretion signal, mRNA secretion signals within the 5′‐untranslated region (5′‐UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β‐lactamase fusions to probe the secretion efficacy of the N‐terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early‐type substrates FlgD, FlgF, FlgE and the late‐type substrate FlgL were analysed in detail. Analysing the role of the 5′‐UTR in secretion of flgB and flgE revealed that the native 5′‐UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate‐specific chaperones allowing for targeted secretion of flagellar substrates.  相似文献   

14.
FliE is a flagellar basal body protein of Salmonella whose detailed location and function have not been established. A mutant allele of fliE, which caused extremely poor flagellation and swarming, generated extragenic suppressors, all of which mapped to flgB, one of four genes encoding the basal body rod; the fliE flgB pseudorevertants were better flagellated and swarmed better than the fliE parent, especially when the temperature was reduced from 37 to 30 degrees C. Motility of the pseudorevertants in liquid culture was markedly better than motility on swarm plates; we interpret this to mean that reduced flagellation is less deleterious at low viscous loads. Overproduction of the mutant FliE protein improved the motility of the parental fliE mutant and its pseudorevertants, though not to wild-type levels. Overproduction of suppressor FlgB (but not wild-type FlgB) in the fliE mutant also resulted in improved motility. The second-site FlgB mutation by itself had no phenotype; cells swarmed as well as wild-type cells. When overproduced, wild-type FliE was dominant over FliE-V99G, but the reverse was not true; that is, overproduced FliE-V99G was not negatively dominant over wild-type FliE. We conclude that the mutant protein has reduced probability of assembly but, if assembled, functions relatively well. Export of the flagellar protein FlgD, which is known to be FliE dependent, was severely impaired by the FliE-V99G mutation but was significantly improved in the suppressor strains. The FliE mutation, V99G, was close to the C terminus of the 104-amino-acid sequence; the suppressing mutations in FlgB were all either G119E or G129D, close to the C terminus of its 138-amino-acid sequence. Affinity blotting experiments between FliE as probe and various basal body proteins as targets and vice versa revealed strong interactions between FliE and FlgB; much weaker interactions between FliE and other rod proteins were observed and probably derive from the known similarities among these proteins. We suggest that FliE subunits constitute a junction zone between the MS ring and the rod and also that the proximal rod structure consists of FlgB subunits.  相似文献   

15.
The stoichiometries of components within the flagellar hook-(basal-body) complex of Salmonella typhimurium have been determined. The hook protein (FlgE), the most abundant protein in the complex, is present at approximately 130 subunits. Hook-associated protein 1 (FlgK) is present at approximately 12 subunits. The distal rod protein (FlgG) is present at approximately 26 subunits, while the proximal rod proteins (FlgB, FlgC and FlgF) are present at only approximately six subunits each. The stoichiometries of the proximal rod proteins and hook-associated protein 1 are, within experimental error, consistent with values of 5 or 6, and 11, respectively. Such values would correspond to either one or two turns of a helical structure with a basic helix of approximately 5.5 subunits per turn, which is the geometry of both the hook and the filament and, one supposes, the rod and hook-associated proteins. These stoichiometries may derive from rules for the heterologous interactions that occur when a helical structure consists of successive segments constructed from different proteins; the stoichiometries within the hook and the distal portion of the rod must, however, be set by different mechanisms. The stoichiometries for the ring proteins are approximately 26 subunits each for the M-ring protein (FliF), the P-ring protein (FlgI), and the L-ring protein (FlgH); the protein responsible for the S-ring feature is not known. The rings presumably have rotational rather than helical symmetry, in which case the stoichiometries would be directly constrained by the intersubunit bonding angle. The ring stoichiometries are discussed in light of other information concerning flagellar structure and function.  相似文献   

16.
《Gene》1997,189(1):135-137
We report the DNA sequence of 7205 bp of the Agrobacterium tumefaciens chromosome. This contains a putative operon encoding homologues of the flagellar rod and associated proteins FlgBCG and FliE, the L and P ring proteins (FlgHI) a possible flagellum-specific export protein FliP, and two proteins of unknown function, FlgA and FliL. Several of these genes have overlapping stop and start codons. Three non-flagellate Tn5-induced mutations map to this operon: fla-11 to the first gene, encoding the rod protein FlgB; fla-15 to flgA; and fla-12 to fliL. A site-specific mutation introduced into the final gene in this cluster, fliP, also resulted in a non-flagellate phenotype. This indicates that the operon is expressed, and that at least FlgB, FlgA, FliL and FliP are required for flagellar assembly in A. tumefaciens. The bulk of this operon is conserved in the same order in Rhizobium meliloti.  相似文献   

17.
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.  相似文献   

18.
The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l-ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-sigma28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-sigma28 factor FlgM was increased in flk mutant strains. Using FlgM-beta-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes.  相似文献   

19.
Many Gram-negative bacteria use type III secretion systems to secrete virulence factors as well as the structural components of the flagellum. Some bacterial secretion systems use a secretion signal contained in the amino acid sequence of the secreted substrate. However, substrates of type III systems lack a single, defined secretion signal. There is evidence for the existence of three independent secretion signals - the 5' region of the mRNA, the amino terminus of the substrate and the ability of a secretion chaperone to bind the substrate before secretion - that direct substrates for secretion through the type III pathways. One or more of these signals might be used for a given substrate. A recent study of flagellar assembly presented evidence for a role of translation in the type III secretion mechanism. We present a unifying model for type III secretion that can be applied to flagellar assembly, needle assembly and the secretion of virulence factors. The potential role of translation in regulating the timing of substrate secretion is also discussed.  相似文献   

20.
Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4+ T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号