首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present contribution is the first report of parasitosis by a chytrid fungus in wild anuran amphibians in Argentina, as well as the first case of amphibian mortality documented to date in Argentina. We report the presence of the chytrid fungus in dead adult Leptodactylus ocellatus. It has been suggested that chytridiomycosis is the main cause of death in several amphibian populations worldwide. Our study demonstrates that chytridiomycosis afflicts L. ocellatus, a common widespread amphibian species, and is the first report of chytridiomycosis in the Argentinian lowlands. The occurrence at this latitude would indicate an extended distribution of this fungus in wildlife populations. It is also the first report of amphibian mortality due to chytrid fungus in our country. It is noteworthy that the site of collection is situated very close to sea level in a temperate climate zone and that this represents the southern most record for South American wild amphibians.  相似文献   

2.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

3.
Chytridiomycosis is an emerging infectious disease of amphibians caused by the chytrid Batrachochytrium dendrobatidis. The disease has been associated with global amphibian declines and species extinctions, however the principle drivers that underly the emergence of chytridiomycosis remain unclear. Current evidence suggests that the world trade in amphibians is implicated in the emergence of chytridiomycosis. Here, we review the evidence that the amphibian trade is driving the emergence of chytridiomycosis by (1) spreading infected animals worldwide, (2) introducing non-native infected animals into naïve populations and (3) amplifying infection of amphibians by co-housing, followed by untreated discharge of infectious zoospores into water supplies. We conclude that the evidence that the amphibian trade is contributing to the spread of Batrachochytrium dendrobatidis is strong, and that specific actions are necessary to prevent the introduction of the pathogen into thus-far uninfected areas. Specifically, we recommend the development of national risk-abatement plans, focused on firstly preventing introduction of Bd into disease free areas, and secondly, decreasing the impact of the disease on populations that are currently infected.  相似文献   

4.
Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis.  相似文献   

5.
Chytrid fungus Batrachochytrium dendrobatidis (Bd), an emerging disease, has been decimating amphibian populations around the world for several decades. We quantified aspects of larval fitness, adaptive (major histocompatibility complex) diversity and neutral (microsatellite) diversity in natterjack toad (Bufo calamita) populations in two regions of north-west England. Toads in region one had no evidence of chytrid infection, whereas in region two there was a substantial prevalence of Bd. Larval fitness (growth rate, time to metamorphosis and survival) of B. calamita did not differ between the regions. Genetic diversity at microsatellite loci was much higher in the infected than in the uninfected region, but the converse was true of MHC diversity indicating that genetic drift was unlikely to explain the differences in MHC between the regions. Furthermore, MHC allele frequencies varied significantly between Bd-infected and uninfected populations. Microsatellite diversity was not a robust indicator of larval fitness in these toad populations while MHC genotype frequencies varied in a way that was consistent with directional selection in response to pathogen prevalence. The acquired immune defences may therefore play an important role in determining the susceptibility of amphibian species to chytridiomycosis.  相似文献   

6.
The spotted hyena (Crocuta crocuta Erxleben) and the lion (Panthera leo Linnaeus) are two of the most abundant and charismatic large mammalian carnivores in Africa and yet both are experiencing declining populations and significant pressures from environmental change. However, with few exceptions, most studies have focused on influences upon spotted hyena and lion populations within individual sites, rather than synthesizing data from multiple locations. This has impeded the identification of over‐arching trends behind the changing biomass of these large predators. Using partial least squares regression models, influences upon population biomass were therefore investigated, focusing upon prey biomass, temperature, precipitation, and vegetation cover. Additionally, as both species are in competition with one other for food, the influence of competition and evidence of environmental partitioning were assessed. Our results indicate that spotted hyena biomass is more strongly influenced by environmental conditions than lion, with larger hyena populations in areas with warmer winters, cooler summers, less drought, and more semi‐open vegetation cover. Competition was found to have a negligible influence upon spotted hyena and lion populations, and environmental partitioning is suggested, with spotted hyena population biomass greater in areas with more semi‐open vegetation cover. Moreover, spotted hyena is most heavily influenced by the availability of medium‐sized prey biomass, whereas lion is influenced more by large size prey biomass. Given the influences identified upon spotted hyena populations in particular, the results of this study could be used to highlight populations potentially at greatest risk of decline, such as in areas with warming summers and increasingly arid conditions.  相似文献   

7.
Studying patterns of population structure across the landscape sheds light on dispersal and demographic processes, which helps to inform conservation decisions. Here, we study how social organization and landscape factors affect spatial patterns of genetic differentiation in an ant species living in mountainous regions. Using genome‐wide SNP markers, we assess population structure in the Alpine silver ant, Formica selysi. This species has two social forms controlled by a supergene. The monogyne form has one queen per colony, while the polygyne form has multiple queens per colony. The two social forms co‐occur in the same populations. For both social forms, we found a strong pattern of isolation‐by‐distance across the Alps. Within regions, genetic differentiation between populations was weaker for the monogyne form than for the polygyne form. We suggest that this pattern is due to higher dispersal and effective population sizes in the monogyne form. In addition, we found stronger isolation‐by‐distance and lower genetic diversity in high elevation populations, compared to lowland populations, suggesting that gene flow between F. selysi populations in the Alps occurs mostly through riparian corridors along lowland valleys. Overall, this survey highlights the need to consider intraspecific polymorphisms when assessing population connectivity and calls for special attention to the conservation of lowland habitats in mountain regions.  相似文献   

8.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been devastating amphibians globally. Two general scenarios have been proposed for the nature and spread of this pathogen: Bd is an epidemic, spreading as a wave and wiping out individuals, populations, and species in its path; and Bd is endemic, widespread throughout many geographic regions on every continent except Antarctica. To explore these hypotheses, we conducted a transcontinental transect of United States Department of Defense (DoD) installations along U.S. Highway 66 from California to central Illinois, and continuing eastward to the Atlantic Seaboard along U.S. Interstate 64 (in sum from Marine Corps Base Camp Pendleton in California to Naval Air Station Oceana in Virginia). We addressed the following questions: 1) Does Bd occur in amphibian populations on protected DoD environments? 2) Is there a temporal pattern to the presence of Bd? 3) Is there a spatial pattern to the presence of Bd? and 4) In these limited human-traffic areas, is Bd acting as an epidemic (i.e., with evidence of recent introduction and/or die-offs due to chytridiomycosis), or as an endemic (present without clinical signs of disease)? Bd was detected on 13 of the 15 bases sampled. Samples from 30 amphibian species were collected (10% of known United States'' species); half (15) tested Bd positive. There was a strong temporal (seasonal) component; in total, 78.5% of all positive samples came in the first (spring/early-summer) sampling period. There was also a strong spatial component—the eleven temperate DoD installations had higher prevalences of Bd infection (20.8%) than the four arid (<60 mm annual precipitation) bases (8.5%). These data support the conclusion that Bd is now widespread, and promote the idea that Bd can today be considered endemic across much of North America, extending from coast-to-coast, with the exception of remote pockets of naïve populations.  相似文献   

9.
The epidermis plays an indispensable barrier function in animals. Some species have evolved unique epidermal structures to adapt to different environments. Aquatic and semi‐aquatic mammals (cetaceans, manatees, and hippopotamus) are good models to study the evolution of epidermal structures because of their exceptionally thickened stratum spinosum, the lack of stratum granulosum, and the parakeratotic stratum corneum. This study aimed to analyze an upstream regulatory gene transient receptor potential cation channel, subfamily V, member 3 (TRPV3) of epidermal differentiation so as to explore the association between TRPV3 evolution and epidermal changes in mammals. Inactivating mutations were detected in almost all the aquatic cetaceans and several terrestrial mammals. Relaxed selective pressure was examined in the cetacean lineages with inactivated TRPV3, which might contribute to its exceptionally thickened stratum spinosum as the significant thickening of stratum spinosum in TRPV3 knock‐out mouse. However, functional TRPV3 may exist in several terrestrial mammals due to their strong purifying selection, although they have “inactivating mutations.” Further, for intact sequences, relaxed selective constraints on the TRPV3 gene were also detected in aquatic cetaceans, manatees, and semi‐aquatic hippopotamus. However, they had intact TRPV3, suggesting that the accumulation of inactivating mutations might have lagged behind the relaxed selective pressure. The results of this study revealed the decay of TRPV3 being the genomic trace of epidermal development in aquatic and semi‐aquatic mammals. They provided insights into convergently evolutionary changes of epidermal structures during the transition from the terrestrial to the aquatic environment.  相似文献   

10.
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.  相似文献   

11.
Geographic differences in floral traits may reflect geographic differences in effective pollinator assemblages. Independent local adaptation to pollinator assemblages in multiple regions would be expected to cause parallel floral trait evolution, although sufficient evidence for this is still lacking. Knowing the intraspecific evolutionary history of floral traits will reveal events that occur in the early stages of trait diversification. In this study, we investigated the relationship between flower spur length and pollinator size in 16 populations of Aquilegia buergeriana var. buergeriana distributed in four mountain regions in the Japanese Alps. We also examined the genetic relationship between yellow‐ and red‐flowered individuals, to see if color differences caused genetic differentiation by pollinator isolation. Genetic relationships among 16 populations were analyzed based on genome‐wide single‐nucleotide polymorphisms. Even among populations within the same mountain region, pollinator size varied widely, and the average spur length of A. buergeriana var. buergeriana in each population was strongly related to the average visitor size of that population. Genetic relatedness between populations was not related to the similarity of spur length between populations; rather, it was related to the geographic proximity of populations in each mountain region. Our results indicate that spur length in each population evolved independently of the population genetic structure but in parallel in response to local flower visitor size in different mountain regions. Further, yellow‐ and red‐flowered individuals of A. buergeriana var. buergeriana were not genetically differentiated. Unlike other Aquilegia species in Europe and America visited by hummingbirds and hawkmoths, the Japanese Aquilegia species is consistently visited by bumblebees. As a result, genetic isolation by flower color may not have occurred.  相似文献   

12.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

13.
14.
The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (denoted Bd), causes large-scale epizootics in naïve amphibian populations. Intervention strategies to rapidly respond to Bd incursions require sensitive and accurate diagnostic methods. Chytridiomycosis usually is assessed by quantitative polymerase chain reaction (qPCR) amplification of amphibian skin swabs. Results based on this method, however, sometimes yield inconsistent results on infection status and inaccurate scores of infection intensity. In Asia and other regions where amphibians typically bear low Bd loads, swab results are least reliable. We developed a Bd-sampling method that collects zoospores released by infected subjects into an aquatic medium. Bd DNA is extracted by filters and amplified by nested PCR. Using laboratory colonies and field populations of Bombina orientalis, we compare results with those obtained on the same subjects by qPCR of DNA extracted from swabs. Many subjects, despite being diagnosed as Bd-negative by conventional methods, released Bd zoospores into collection containers and thus must be considered infected. Infection loads determined from filtered water were at least 1000 times higher than those estimated from swabs. Subjects significantly varied in infection load, as they intermittently released zoospores, over a 5-day period. Thus, the method might be used to compare the infectivity of individuals and study the periodicity of zoospore release. Sampling methods based on water filtration can dramatically increase the capacity to accurately diagnose chytridiomycosis and contribute to a better understanding of the interactions between Bd and its hosts.  相似文献   

15.
Changed fire regimes and the introduction of rabbits, cats, foxes, and large exotic herbivores have driven widespread ecological catastrophe in Australian arid and semi‐arid zones, which encompass over two‐thirds of the continent. These threats have caused the highest global mammal extinction rates in the last 200 years, as well as significantly undermining social, economic, and cultural practices of Aboriginal peoples of this region. However, a new and potentially more serious threat is emerging. Buffel grass (Cenchrus ciliaris L.) is a globally significant invader now widespread across central Australia, but the threat this ecological transformer species poses to biodiversity, ecosystem function, and culture has received relatively little attention. Our analyses suggest threats from buffel grass in arid and semi‐arid areas of Australia are at least equivalent in magnitude to those posed by invasive animals and possibly higher, because unlike these more recognized threats, buffel has yet to occupy its potential distribution. Buffel infestation also increases the intensity and frequency of wildfires that affect biodiversity, cultural pursuits, and productivity. We compare the logistical and financial challenges of creating and maintaining areas free of buffel for the protection of biodiversity and cultural values, with the creation and maintenance of refuges from introduced mammals or from large‐scale fire in natural habitats. The scale and expense of projected buffel management costs highlight the urgent policy, research, and financing initiatives essential to safeguard threatened species, ecosystems, and cultural values of Aboriginal people in central Australia.  相似文献   

16.
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.  相似文献   

17.
The spatial distribution of plants is constrained by demographic and ecogeographic factors that determine the range and abundance of the species. Wild grapevine (Vitis vinifera ssp. sylvestris) is distributed from Switzerland in the north to Israel in the south. However, little is known about the ecogeographic constraints of this species and its genetic and phenotypic characteristics, especially at the southern edge of its distribution range in the Levant region. In this study, we explore the population structure of southern Levantine wild grapevines and the correlation between demographic and ecogeographic characteristics. Based on our genetic analysis, the wild grapevine populations in this region can be divided into two major subgroups in accordance with a multivariate spatial and ecogeographical clustering model. The identified subpopulations also differ in morphological traits, mainly leaf hairiness which may imply adaptation to environmental stress. The findings suggest that the Upper Jordan River population was spread to the Sea of Galilee area and that a third smaller subpopulation at the south of the Golan Heights may represent a distinguished gene pool or a recent establishment of a new population. A spatial distribution model indicated that distance to water sources, Normalized difference vegetation index, and precipitation are the main environmental factors constraining V. vsylvestris distribution at its southern distribution range. These factors in addition to limited gene flow between populations prevent further spread of wild grapevines southwards to semi‐arid regions.  相似文献   

18.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

19.
The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent‐based modeling. The model is developed for Bombus sp. and captures within‐season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature‐dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within‐season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi‐natural habitats and early and late flowering crops) on bumblebee populations.  相似文献   

20.
The environment experienced during development, and its impact on intrinsic condition, can have lasting outcomes for individual phenotypes and could contribute to variation in adult senescence trajectories. However, the nature of this relationship in wild populations remains uncertain, owing to the difficulties in summarizing natal conditions and in long‐term monitoring of individuals from free‐roaming long‐lived species. Utilizing a closely monitored, closed population of Seychelles warblers (Acrocephalus sechellensis), we determine whether juvenile body mass is associated with natal socioenvironmental factors, specific genetic traits linked to fitness in this system, survival to adulthood, and senescence‐related traits. Juveniles born in seasons with higher food availability and into smaller natal groups (i.e., fewer competitors) were heavier. In contrast, there were no associations between juvenile body mass and genetic traits. Furthermore, size‐corrected mass—but not separate measures of natal food availability, group size, or genetic traits—was positively associated with survival to adulthood, suggesting juvenile body mass is indicative of natal condition. Heavier juveniles had greater body mass and had higher rates of annual survival as adults, independent of age. In contrast, there was no association between juvenile mass and adult telomere length attrition (a measure of somatic stress) nor annual reproduction. These results indicate that juvenile body mass, while not associated with senescence trajectories, can influence the likelihood of surviving to old age, potentially due to silver‐spoon effects. This study shows that measures of intrinsic condition in juveniles can provide important insights into the long‐term fitness of individuals in wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号