首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Destination-selective long-distance movement of phloem proteins   总被引:2,自引:0,他引:2       下载免费PDF全文
The phloem macromolecular transport system plays a pivotal role in plant growth and development. However, little information is available regarding whether the long-distance trafficking of macromolecules is a controlled process or passive movement. Here, we demonstrate the destination-selective long-distance trafficking of phloem proteins. Direct introduction, into rice (Oryza sativa), of phloem proteins from pumpkin (Cucurbita maxima) was used to screen for the capacity of specific proteins to move long distance in rice sieve tubes. In our system, shoot-ward translocation appeared to be passively carried by bulk flow. By contrast, root-ward movement of the phloem RNA binding proteins 16-kD C. maxima phloem protein 1 (CmPP16-1) and CmPP16-2 was selectively controlled. When CmPP16 proteins were purified, the root-ward movement of CmPP16-1 became inefficient, suggesting the presence of pumpkin phloem factors that are responsible for determining protein destination. Gel-filtration chromatography and immunoprecipitation showed that CmPP16-1 formed a complex with other phloem sap proteins. These interacting proteins positively regulated the root-ward movement of CmPP16-1. The same proteins interacted with CmPP16-2 as well and did not positively regulate its root-ward movement. Our data demonstrate that, in addition to passive bulk flow transport, a destination-selective process is involved in long-distance movement control, and the selective movement is regulated by protein-protein interaction in the phloem sap.  相似文献   

2.
Serpins are unique inhibitors of serine proteases that are located in various plant tissues and organs. An orthologue of the pumpkin (Cucurbita maxima) phloem serpin CmPS-1 was amplified from cucumber (Cucumis sativus) RNA by RT-PCR, cloned, and designated as CsPS-1 (GenBank accession no. AJ866989). Alternative amino acid sequences in the reactive centre loop suggest distinct inhibitory specificity between CmPS-1 and CsPS-1. A difference in the electrophoretic mobility of these serpins was used in heterografts to establish that serpins are phloem-mobile. Immuno light microscopy revealed that the phloem serpins are localized exclusively to sieve elements (SE), while the phloem filament protein CmPP1, used as a reference, is localized to both SEs and companion cells (CCs). Similar to CmPS-1, CsPS-1 accumulates over time in phloem exudates, indicating that serpins differ from other phloem-mobile proteins whose concentrations appear to be stable in phloem exudates. These differences could reflect alternative mechanisms regulating protein turnover and/or inaccessibility of protein degradation. The functionality of the pore/plasmodesma units connecting SEs and CCs was tested with graft-transmitted CmPP1 as a transport marker. The occurrence of CmPP1 in the CCs of the Cucumis graft partner shows that translocated 88 kDa phloem filament protein monomers can symplasmically exit the SE and accumulate in the CC. By contrast, serial sections probed with the serpin antibody demonstrate that the 43 kDa serpin does not enter CCs. Collectively, these data indicate that CCs play a decisive role in homeostasis of exudate proteins; proteins not accessing the CCs accumulate in SEs and display a time-dependent increase in concentration.  相似文献   

3.
4.
In yeast, eIF5A, in combination with eEF2, functions at the translation step, during the protein elongation cycle. This result is of significance with respect to functioning of the enucleate sieve tube system, as eIF5A was recently detected in Cucurbita maxima (pumpkin) phloem sap. In the present study, we further characterized four CmeIF5A isoforms, encoding three proteins, all of which were present in the phloem sap. Although hypusination of CmeIF5A was not necessary for entry into the sieve elements, this unique post‐translational modification was necessary for RNA binding. The two enzymes required for hypusination were detected in pumpkin phloem sap, where presumably this modification takes place. A combination of gel‐filtration chromatography and protein overlay assays demonstrated that, as in yeast, CmeIF5A interacts with phloem proteins, like eEF2, known to be involved in protein synthesis. These findings are discussed in terms of a potential role for eIF5A in regulating protein synthesis within the enucleate sieve tube system of the angiosperms.  相似文献   

5.
In plants, cell-to-cell trafficking of non-cell-autonomous proteins (NCAPs) involves protein-protein interactions, and a role for posttranslational modification has been implicated. In this study, proteins contained in pumpkin (Cucurbita maxima cv Big Max) phloem sap were used as a source of NCAPs to further explore the molecular basis for selective NCAP trafficking. Protein overlay assays and coimmunoprecipitation experiments established that phosphorylation and glycosylation, on both Nicotiana tabacum NON-CELL-AUTONOMOUS PATHWAY PROTEIN1 (Nt-NCAPP1) and the phloem NCAPs, are essential for their interaction. Detailed molecular analysis of a representative phloem NCAP, Cm-PP16-1, identified the specific residues on which glycosylation and phosphorylation must occur for effective binding to NCAPP1. Microinjection studies confirmed that posttranslational modification on these residues is essential for cell-to-cell movement of Cm-PP16-1. Lastly, a glutathione S-transferase (GST)-Cm-PP16-1 fusion protein system was employed to test whether the peptide region spanning these residues was required for cell-to-cell movement. These studies established that a 36-amino acid peptide was sufficient to impart cell-to-cell movement capacity to GST, a normally cell-autonomous protein. These findings are consistent with the hypothesis that a phosphorylation-glycosylation recognition motif functions to control the binding of a specific subset of phloem NCAPs to NCAPP1 and their subsequent transport through plasmodesmata.  相似文献   

6.
Malter D  Wolf S 《Protoplasma》2011,248(1):217-224
In addition to small molecules such as sugars and amino acids, phloem sap contains macromolecules, including mRNA and proteins. It is generally assumed that all molecules in the phloem sap are on the move from source to sink, but recent evidence suggests that the macromolecules' direction of movement can be controlled by endogenous plant mechanisms. To test the hypothesis that the phloem-sap protein profile is affected by local metabolic activities, we analyzed the phloem-sap proteome in young and mature tissues of melon plants. We also examined the effect of cucumber mosaic virus (CMV) infection and expression of CMV movement protein in transgenic melon plants on the phloem protein profile. Sap collected from cut sections of young stems or petioles contained specific proteins that were absent from sap collected from mature stems or petioles. Most of these proteins were involved in defense response and protection from oxidative stress, suggesting that they play a role in maintaining safe activity of the sieve tubes in young tissues. Phloem sap collected from CMV-infected plants and transgenic plants expressing the CMV movement protein contained only a few additional proteins with molecular masses of 18 to 75 kDa. Here again, most of the additional proteins were associated with stress responses. Our study indicated that the proteome of phloem sap is dynamic and under developmental control. Entry and exit of proteins from the sieve tube can be regulated at the tissue level. Moreover, the plant can maintain regulation of protein trafficking from companion cells to sieve elements under viral infection or other perturbations in plasmodesmal function.  相似文献   

7.
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.  相似文献   

8.
9.
A systemic small RNA signaling system in plants   总被引:23,自引:0,他引:23       下载免费PDF全文
Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes.  相似文献   

10.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

11.
The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI‐MS and ESI‐MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19–21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe‐containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe‐binding proteins in phloem sap: a metallothionein‐like protein type 2B identified in the Fe‐affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem‐specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn‐binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins.  相似文献   

12.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

13.
Alanine scanning mutagenesis was performed on the red clover necrotic mosaic virus (RCNMV) movement protein (MP), and 12 mutants were assayed in vitro for RNA binding characteristics and in vivo for their ability to potentiate RCNMV cell-to-cell movement. The mutant phenotypes that were identified in vitro and in vivo suggest both that cooperative RNA binding is not necessary for cell-to-cell movement in vivo and that only a fraction of the wild-type RNA binding may be required. The MP mutants defined at least three distinct functional regions in the MP: an RNA binding domain, a cooperative RNA binding domain, and a third domain that is necessary for cell-to-cell movement in vivo. This third domain may be required for targeting the MP to cell walls and plasmodesmata, interacting with host proteins, folding, or possibly binding RNA into a functional ribonucleoprotein complex capable of cell-to-cell movement.  相似文献   

14.
The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cis-trans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cis-trans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)(6)-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)(6)-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.  相似文献   

15.
A strong correlation was previously observed between carbon isotope discrimination (Delta(13)C) of phloem sap sugars and phloem sap sugar concentration in the phloem-bleeding tree Eucalyptus globulus Labill. (J. Pate, E. Shedley, D. Arthur, M. Adams [1998] Oecologia 117: 312-322). We hypothesized that correspondence between these two parameters results from covarying responses to plant water potential. We expected Delta(13)C to decrease with decreasing plant water potential and phloem sap sugar concentration to increase, thereby maintaining turgor within sieve tubes. The hypothesis was tested with analyses of E. globulus trees growing on opposite ends of a rainfall gradient in southwestern Australia. The Delta(13)C of phloem sap sugars was closely related to phloem sap sugar concentration (r = -0.90, P < 0.0001, n = 40). As predicted, daytime shoot water potential was positively related to Delta(13)C (r = 0.70, P < 0.0001, n = 40) and negatively related to phloem sap sugar concentration (r = -0.86, P < 0.0001, n = 40). Additional measurements showed a strong correspondence between predawn shoot water potential and phloem sap sugar concentration measured at midday (r = -0.87, P < 0.0001, n = 30). The Delta(13)C of phloem sap sugars collected from the stem agreed well with that predicted from instantaneous measurements of the ratio of intercellular to ambient carbon dioxide concentrations on subtending donor leaves. In accordance, instantaneous ratio of intercellular to ambient carbon dioxide concentrations correlated negatively with phloem sap sugar concentration (r = -0.91, P < 0.0001, n = 27). Oxygen isotope enrichment (Delta(18)O) in phloem sap sugars also varied with phloem sap sugar concentration (r = 0.91, P < 0.0001, n = 39), consistent with predictions from a theoretical model of Delta(18)O. We conclude that drought induces correlated variation in the concentration of phloem sap sugars and their isotopic composition in E. globulus.  相似文献   

16.
Two integral membrane proteins, MP28 and MP23, were found in protein bodies isolated from pumpkin (Cucurbita sp.) seeds. Molecular characterization revealed that both MP28 and MP23 belong to the seed TIP (tonoplast intrinsic protein) subfamily. The predicted 29 kDa precursor to MP23 includes six putative membrane-spanning domains, and the loop between the first and second transmembrane domains is larger than that of MP28. The N-terminal sequence of the mature MP23 starts from residue 66 in the first loop, indicating that an N-terminal 7 kDa fragment that contains one transmembrane domain is post-translationally removed. During maturation of pumpkin seeds, mRNAs for MP28 and MP23 became detectable in cotyledons at the early stage, and their levels increased slightly until a rapid decrease occurred at the late stage. This is consistent with the accumulation of the 29 kDa precursor and MP28 in the cotyledons at the early stage. By contrast, MP23 appeared at the late stage simultaneously with the disappearance of the 29 kDa precursor. Thus, it seems possible that the conversion of the 29 kDa precursor to the mature MP23 might occur in the vacuoles after the middle stage of seed maturation. Both proteins were localized immunocytochemically on the membranes of the vacuoles at the middle stage and the protein bodies at the late stage. These results suggest that both MP28 and the precursor to MP23 accumulate on vacuolar membranes before the deposition of storage proteins, and then the precursor is converted to the mature MP23 at the late stage. These two TIPs might have a specific function during the maturation of pumpkin seeds.  相似文献   

17.
Phloem proteins (P-proteins) are an enigmatic group of proteins present in most angiosperm species. The best characterized P-proteins (PP1 and PP2) are synthesized in companion cells, transported into sieve elements via pore plasmodesmata and translocated through the plant. Characteristics such as long-distance translocation, RNA-binding activity and capacity of increasing plasmodesmata exclusion size suggest that certain phloem proteins could be involved in RNA transport within the plant, forming translocatable ribonucleoprotein complexes with endogenous or pathogenic RNAs. Long-distance movement of RNA through the phloem is a process known to occur, but both the mechanisms involved and the components constituting this potential information network remain unclear. Here, we demonstrate that several melon phloem proteins have a wide RNA-binding activity. Serological assays strongly suggest that one of these proteins is the melon phloem protein 2 (CmmPP2). Mass spectrometry analysis undoubtedly identifies another one as the recently characterized melon phloem lectin (CmmLec17). Grafting experiments demonstrate that the CmmLec17 is a translocatable phloem protein, able to move through intergeneric grafts from melon to pumpkin. Translocatability and RNA-binding activity was also demonstrated for an uncharacterized protein of approximately 14 kDa. In light of these results the possible involvement of these phloem proteins in the long-distance transport of melon RNAs is discussed.  相似文献   

18.
Sieve elements in the phloem of most angiosperms contain proteinaceous filaments and aggregates called P-protein. In the genus Cucurbita, these filaments are composed of two major proteins: PP1, the phloem filament protein, and PP2, the phloem lectin. The gene encoding the phloem filament protein in pumpkin (Cucurbita maxima Duch.) has been isolated and characterized. Nucleotide sequence analysis of the reconstructed gene gPP1 revealed a continuous 2430 bp protein coding sequence, with no introns, encoding an 809 amino acid polypeptide. The deduced polypeptide had characteristics of PP1 and contained a 15 amino acid sequence determined by N-terminal peptide sequence analysis of PP1. The sequence of PP1 was highly repetitive with four 200 amino acid sequence domains containing structural motifs in common with cysteine proteinase inhibitors. Expression of the PP1 gene was detected in roots, hypocotyls, cotyledons, stems, and leaves of pumpkin plants. PP1 and its mRNA accumulated in pumpkin hypocotyls during the period of rapid hypocotyl elongation after which mRNA levels declined, while protein levels remained elevated. PP1 was immunolocalized in slime plugs and P-protein bodies in sieve elements of the phloem. Occasionally, PP1 was detected in companion cells. PP1 mRNA was localized by in situ hybridization in companion cells at early stages of vascular differentiation. The developmental accumulation and localization of PP1 and its mRNA paralleled the phloem lectin, further suggesting an interaction between these phloem-specific proteins.  相似文献   

19.
Zhang C  Yu X  Ayre BG  Turgeon R 《Plant physiology》2012,158(4):1873-1882
Cucurbits exude profusely when stems or petioles are cut. We conducted studies on pumpkin (Cucurbita maxima) and cucumber (Cucumis sativus) to determine the origin and composition of the exudate. Morphometric analysis indicated that the exudate is too voluminous to derive exclusively from the phloem. Cold, which inhibits phloem transport, did not interfere with exudation. However, ice water applied to the roots, which reduces root pressure, rapidly diminished exudation rate. Sap was seen by microscopic examination to flow primarily from the fascicular phloem in cucumber, and several other cucurbit species, but primarily from the extrafascicular phloem in pumpkin. Following exposure of leaves to 14CO2, radiolabeled stachyose and other sugars were detected in the exudate in proportions expected of authentic phloem sap. Most of this radiolabel was released during the first 20 s. Sugars in exudate were dilute. The sugar composition of exudate from extrafascicular phloem near the edge of the stem differed from that of other sources in that it was high in hexose and low in stachyose. We conclude that sap is released from cucurbit phloem upon wounding but contributes negligibly to total exudate volume. The sap is diluted by water from cut cells, the apoplast, and the xylem. Small amounts of dilute, mobile sap from sieve elements can be obtained, although there is evidence that it is contaminated by the contents of other cell types. The function of P-proteins may be to prevent water loss from the xylem as well as nutrient loss from the phloem.  相似文献   

20.
In higher plants, the supply of metals such as Zn and Fe via phloem is important for the growth and physiology of young organs. However, little information is available on the speciation (chemical forms) of these metals in the phloem fluids. Because the pH of phloem fluids is slightly alkaline and the concentration of phosphate, which may bind to metals, is high, Zn and Fe in phloem fluids could be precipitated if these metals do not form complexes with some ligand compounds. In the present experiment, we examined the chemical forms of Zn and Fe in phloem sap collected from rice (Oryza sativa L.) by separating the phloem sap using size-exclusion and anion-exchange chromatography, and identifying the contents using electrospray ionization time-of-flight mass spectrometry. The low molecular weight chemical forms of Zn and Fe were identified as Zn-nicotianamine and Fe(III)-2'-deoxymugineic acid complexes, respectively. This report is the first to identify metal-chelate complexes in rice phloem sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号