首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Testicular macrophages and Leydig cells from adult animals are known to be functionally coupled. For example, secreted products from macrophages stimulate testosterone secretion by Leydig cells. In adult rat testes, structural coupling also exists between these cells. This coupling consists of cytoplasmic projections from Leydig cells located within cytoplasmic invaginations of macrophages. Although macrophages are known to exist in the testis in immature animals, it is not known when these digitations develop. The purpose of the present study was to determine whether the time of their development coincides with known maturational events that occur in Leydig cells, particularly during the peripubertal period. Testes from rats at 20, 30 and 40-days-of-age as well as testes from mature rats weighing more than 500 gm were prepared for ultrastructural analysis. It was found that digitations form between 20 and 30-days-of-age. These structures varied from simple tubular projections to complicated branched structures, suggesting that digitations are more than simple invaginations of microvilli into coated vesicles as previously described. Subplasmalemmal linear densities were also observed within macrophages juxtaposed to Leydig cells. Collagen was commonly observed between macrophages and Leydig cells in animals 20 days old. These studies demonstrate that although macrophages are present in the testis in maximal numbers at 20 days-of-age, they do not form junctions with Leydig cells until day 30. This is just prior to the major increase in secretory activity of rat Leydig cells that occurs during puberty.  相似文献   

2.
Leydig cells prepared routinely (glutaraldehyde--osmium) for ultrastructural studies are generally found to be lacking in subcellular detail as a result of poor membrane preservation and a dense cytoplasmic matrix. A method modified after that of Karnovsky (1971), utilizing a ferrocyanide--osmium mixture for post-treating glutaraldehyde fixed tissued, was found to yield routinely excellent preservation of Leydig cells. The primary advantages of this method were the enhancement of contrast within the Leydig cell and greatly improved membrane preservation. In addition, the smooth endoplasmic reticulum always appeared as an extensive network of interconnected tubules of uniform diameter; mitochondria, lysosomes, peroxisomes, multivesicular bodies, and Golgi were especially prominent. Glycogen and microfilaments, not readily seen in routine preparations, were found to be abundant in these cells. New observations on the numbers and distributions of subcellular organelles are described and are discussed in relation to their possible role in the steroidogenic process. In view of the greatly improved tissue preservation observed in this study, it is suggested that this treatment be used routinely for preservation of rat Leydig cells.  相似文献   

3.
Peritubular Leydig cells located in interstitial areas surrounded by tubules at nearly the same stage of spermatogenesis were analysed. Low-power electron micrographs were used for measurement of cell profile area and higher magnification views provided volume density of SER, Golgi stacks, mitochondria, and lipids. In the adult monkey, no cyclic changes were found in Leydig cells in their size or in the volume density of their organelles. In the adult rat (63 days of age), a comparison limited to stage VII-VIII and stage XI-XII peritubular Leydig cells demonstrated a significantly higher SER content (P less than 0.01) in the former, but no other differences. The study of subadult rats (45 days of age) showed that the full development of spermatogenesis was required to detect significant changes in Leydig cell SER content. The present results provide morphological evidence for an intratesticular control of the Leydig cells of the rat but not for those of the monkey.  相似文献   

4.
The Leydig cells of viscacha (seasonal rodent) show cytoplasmic hypertrophy and regional distribution during the breeding period (summer-autumn). The dominant organelles are smooth endoplasmic reticulum (SER) and mitochondria. A moderately well-developed Golgi, abundant lipid inclusions, dense bodies like lysosomes in different stages, and centrioles are observed. Extensive or focal desmosome and gap-like junctions between neighbouring Leydig cells are present. These cells exhibit an evident hypotrophy and an increase in the number of dense bodies during the gonadal regression in winter (July and August). Cells in different stages of involution are observed in this period. Their nuclei are irregular and heterochromatic. The cytoplasm contains few mitochondria. The vesicular SER is scarse. Irregular and large intercellular spaces with microvilli and amorphous material are present. The junctional complexes are absent. The nuclear and cytoplasmic volume and development of SER and mitochondria increase during the recovery period (spring). The lipid inclusions decrease. Dilatations of the intercellular space with microvilli and limited by focal desmosome-like junctions are observed. In conclusion, the Leydig cells of Lagostomus maximus maximus show deep changes alongside the reproductive cycle. The photoperiod variations, through pineal hypothalamus pituitary axis and the hormone melatonin, are probably responsible for them. Moreover, the fall of serum and tubular testosterone would be one of the factors responsible for gonadal regression.  相似文献   

5.
We have recently shown that acetylated alpha-tubulin containing microtubules (acetyl-MTs; labeled by antibody 6-11B-1) constitute a cold-stable subset of the microtubule network of nonneuronal cells in rat primary forebrain cultures [Cambray-Deakin and Burgoyne: Cell Motil. 8(3):284-291, 1987b]. In contrast, tyrosinated alpha-tubulin containing MTs (tyr-MTs; labeled by antibody YL1/2) are cold-labile. Here we have examined the distribution of acetyl-MTs and tyr-MTs in cultures of newborn rat forebrain astrocytes and simultaneously investigated the distribution of mitochondria and glial filaments. In double-label immunofluorescence experiments a marked colocalisation of acetyl-MTs and glial filament bundles was observed. Tyr-MTs did not show a similar colocalisation with glial filament bundles. Furthermore, the distribution of mitochondria closely followed that of the acetyl-MT and glial filament bundles. When cells were exposed to short-term (30-min) treatments with MT-disrupting agents such as colchicine and nocodazole, the tyr-MT network was removed but the distributions of acetyl-MTs, glial filaments, and mitochondria were unchanged. Increased exposure to colchicine (9-16 hr) caused a progressive disruption of the acetyl-MTs and the collapse of glial filaments and mitochondria to the perinuclear region. These results suggest that acetyl-MTs and glial filaments but not tyr-MTs may be involved in the intracellular transport of organelles and/or in the control of their cytoplasmic distribution.  相似文献   

6.
Using fluorescence microscopy, the mouse monoclonal antibody 2G2 was found to label mitochondria in human cells, as assessed by double staining with either Rhodamine 123 or a polyclonal antibody to mitochondrial matrix HSP-60 proteins. No reactivity to the 2G2 antibody was detected in cells from mouse, rat and chicken. Immunoblotting analysis demonstrated that the 2G2 antigen corresponds to a human protein with a relative mobility of 110 kDa and an approximate isoelectric point of 6.5 that co-partitions with HSP-60 proteins during isolation of mitochondria from HeLa cells. Close examination of the 2G2 staining pattern in HeLa and Fanconi's anaemia cells revealed differences in the morphology and organization of mitochondria in these two cell types. In HeLa cells, mitochondria appear as individual tubular compartments of variable length and are closely associated with vimentin filaments, particularly at the periphery of the nucleus. In Fanconi's anaemia cells, mitochondria have a filamentous shape and form an interconnected cytoplasmic reticulum running in parallel with both vimentin filaments and microtubules. After stabilization with aldehyde- or alcohol-based fixation protocols that optimize the preservation of cytoskeletal components, the epitope targeted by the 2G2 antibody may serve as a valuable marker in the investigation of relationships between mitochondria and other cellular structures in human cells.  相似文献   

7.
In neonates (0 to 3-4 months), the testis contained a mean number of 4.6 X 10(6) Leydig cells representing 4.2 % of its volume; Leydig cell cytoplasm contained 10.2 % of SER. In infants (up to 45 months), Leydig cells regressed but their number increased; their volume density did not change. Leydig cell cytoplasmic volume (454 microns3 ), which was about 2.5-fold less than in neonates (1 119 microns3 ) or adults (1 170 microns3 ), contained only 8.7% of SER. During meiosis stage (38-52 months). Leydig cell numbers and volume density did not vary but the cells reached a maximal size and an amount of SER comparable with that at birth was measured. When spermatogenesis was complete, the Leydig cells represented no more than 0.8% of testis volume, but their number and SER content were significantly increased. Except for a significant decrease when spermatogenesis was completed, Leydig cell lipid content did not change during development, and the volume density of mitochondria did not vary. The mean level of plasma testosterone was 2 ng/ml in neonates and 0.4 ng/ml in infants; it increased to 3 ng/ml during onset of meiosis and reached 10 ng/ml in adults. The profile of testosterone was positively and significantly correlated with the total volume and total number of Leydig cells (P less than 0.01 and P less than 0.02, respectively) and with changes in their cytoplasmic volume (P less than 0.001). Moreover, plasma testosterone levels were positively and significantly correlated with changes in Leydig cell SER content i.e. SER volume density and mean absolute volume per cell (P less than 0.001), total SER in the whole testis (P less than 0.01).  相似文献   

8.
Perfused Chara cells capable of resuming ATP-dependent cytoplasmic streaming in low free Ca++ solutions have been examined by electron microscopy for myosin-like filaments. Filaments 44 nm in diameter and up to 3 micron in length have been found associated with the endoplasmic reticulum that along with mitochondria, microbodies and dictyosomes from the endoplasm becomes immobilised around the sub-cortical actin bundles when ATP is depleted. Such endoplasmic filaments have not been detected in association with mitochondria or microbodies and they have not been found in the stationary cortex. These filaments are extracted from the perfused cell by ATP unless motility-inhibiting levels of cytochalasin B are present. The filaments are not detectable in cells inactivated in solutions containing high (10(-4) M) Ca++ concentrations even when the Ca++ level is subsequently lowered. Consistent with their being required for motility, cytoplasmic streaming cannot be effeiciently reactivated by ATP in such filament-depleted cells. The possibility is discussed that the filaments contain myosin and that the endoplasmic reticulum with which they are associated has a major role in generating and transmitting the motive force for streaming.  相似文献   

9.
Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.  相似文献   

10.
Summary The effect of a single i.p. administration of ethane dimethanesulphonate (EDS) upon rat testicular histology was studied by light microscopy and morphometry up to 4 weeks after treatment. One day after injection the interstitial tissue exhibited degenerating Leydig cells, abundant pyknotic interstitial cells, deposition of cellular debris and extensive networks of fibrillar material. Macrophages contained greatly increased numbers of cytoplasmic inclusion bodies. From 3 to 7 days morphometric analysis showed that Leydig cells and cellular debris had disappeared from the interstitial tissue, leaving only macrophages, fibroblasts and lymphatic endothelial tissue. A very small number of new Leydig cells were seen on day 14, often located in peritubular or perivascular positions. Regeneration of foetal-like Leydig cells occurred by 4 weeks, their cytoplasm containing large lipid inclusions and, numerous Leydig cells were often observed closely applied to the walls of the seminiferous tubules. The observations suggest that, after experimental destruction and depletion of Leydig cells, an interstitial precursor cell, as yet unidentified, gives rise to a new Leydig cell population. EDS thus offers a valuable opportunity to study further the interactions between the seminiferous tubules and the interstitial tissue following the destruction and subsequent regeneration of the Leydig cells.  相似文献   

11.
In Percoll purified Leydig cells from mature rat we have demonstrated that the basal testosterone production (9.5 ng/106 Leydig cells/24 h) is increased 10-fold in presence of a saturating amount of hCG (1 IU/mL) and diminished in a dose-related manner when larger concentrations of gonadotropin are used to reach 14 ng/106 Leydig cells for 50 IU of hCG. If 40% (v/v) seminiferous tubule medium (STM) is added together with hCG (1 IU/mL) to the incubation medium, a further increase (62%) of testosterone output is noticed. Obviously, when the testosterone production is low as a consequence of a higher dose of hCG (50 IU/mL), the STM (80%) improves the steroid synthesis five-fold (67.4 ng). Concerning the cytoskeletal components (microtubules, intermediate filaments and microfilaments) which have been examined in presence or absence of hCG and STM, we have found a rearrangement of cytoskeletal elements as well as cell-shape changes in relation with hormonal activity of the cells. The most prominent alterations of cytoskeletal elements have been observed after 24 h of incubation with 1 IU/mL of hCG added together with 80% of STM. The obtained results suggest that paracrine factor(s) presents in STM and acting in synergy with LH/hCG generate(s) the rearrangement of cytoskeletal structures which, in turn, facilitates the availability of cholesterol for the mitochondria and finally enhances the testosterone production in the rat Leydig cells.  相似文献   

12.
The binding of metabolites of the polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA) to protein in rat testis seminiferous tubules was studied. Treatment of cultured seminiferous tubule segments with DMBA resulted in very little binding to protein, suggesting that the seminiferous epithelium from rat testis lacks the cytochrome P-450-dependent monooxygenase(s) required for DMBA metabolism. In contrast, Leydig cells from rat testis contain monooxygenase systems which catalyze the metabolism of PAH, such as DMBA. This metabolic activation of DMBA was localized in both mitochondria and microsomes derived from Leydig cells and was decreased by inhibitors of the cytochrome P-450 system and by free radical scavengers, suggesting that the metabolism involved both cytochrome P-450 and free radical-dependent pathways. In the presence of whole Leydig cells or microsomes prepared from Leydig cells, the covalent binding of DMBA metabolites to protein of rat testis seminiferous tubules was increased 5- and 13-fold, respectively. These results suggest that DMBA is metabolized primarily in rat testis Leydig cells and that part of the produced metabolites find their way to the seminiferous epithelium, where they undergo further metabolism producing reactive metabolites, possibly cation radicals and diolepoxides, which interfere with the functions of spermatogonia and spermatocytes by modifying key proteins covalently.  相似文献   

13.
The evolution of Leydig cells in Macaca fascicularis fetuses was followed throughout gestation (50-150 d) by morphometric procedures (volume densities of: cells, SER, mitochondria and lipid droplets). Testosterone from umbilical artery plasma was radioimmunoassayed starting on day 57. After predifferentiation and differentiation phases, Leydig cells entered the maturity phase (57-66 d), they occupied 19% of testicular volume, SER and lipid droplets represented 19% and 5% respectively of cytoplasmic volume. Then Leydig cells regressed dramatically (involution phase I: 66-83 d), their volume density decreased to 8%, that of SER to 12% whereas lipids doubled. Leydig cell volume density diminished to 5% during the second half of gestation (involution phase II), but their ultrastructure was not significantly altered. High plasma testosterone level (2.4 ng/ml) was observed during the maturity phase of Leydig cells, decline of testosterone occurred during involution phases I and II (1.13 and 0.58 ng/ml respectively). Its was shown that from day 57 to the end of fetal development the evolution of the plasma testosterone level correlated with the Leydig cell volume density and the SER volume density.  相似文献   

14.
Summary Thirteen male human foetuses ranging in crown-rump length from 29 to 212 mm (ages 8–27 weeks) were studied. Four developmental phases are distinguished. 1. The predifferentiation phase (below 8 weeks): The interstitium contains only undifferentiated mesenchymal cells. 2. The differentiation phase (8–14 weeks): Leydig cells develop and gradually fill the space between the germ cords. 3. The maturity phase (14–18 weeks): The interstitium occupies more than one half of the total area in the testis sections and is filled with mature foetal Leydig cells. 4. The involution phase (18–40 weeks): Most of the Leydig cells gradually degenerate and disappear.The foetal Leydig cells are packed with tubular agranular endoplasmic reticulum (AER). Islets of parallel granular ER membranes and other organelles are embedded in the AER. The mitochondria vary in shape and form, the cristae being mainly tubular. Some mitochondria like organelles contain electron dense inclusions. Dark membrane bound bodies of variable form and resembling the Golgi cisternae are present in most cells. Reinke crystals are never found in the foetal cells. In degenerating Leydig cells the AER appears in vesicular form, membranous whorls are seen in some of them and the cell membrane seems to rupture finally, and cytoplasmic material protrudes outside the cells. The fine structure of the mature foetal Leydig cells is suggested to reflect signs of human chorionic gonadotrophin stimulation.This investigation was supported by the Damon Runyon Memorial Fund (DRG-940) and by the Sigrid Jusélius Foundation.  相似文献   

15.
16.
In the normal ciliary epithelia of the rhesus monkey, owl monkey, albino rabbit, and human eye, a previously unreported relationship exists between mitochondria and certain desmosomes. At these sites, two mitochondria appear like "sentinels" attached to the cytoplasmic surfaces of their respective sides of a desmosome. In other instances, only one side of the junction may be afforded an associated mitochondrion. In each case the cytoplasmic filaments of the desmosome are seen to blend with the outer membrane of the mitochondrion. The relationship between desmosomes and mitochondria in the ciliary epithelium is unique among ocular tissues. A survey of ocular epithelia in the various species examined, failed to give any evidence of similar junctional/organelle complexes. Various functional roles for this relationship are discussed including the possibility that the mitochondria could control the cytoplasmic calcium ion concentration in the microenvironment of their associated desmosomal junctions.  相似文献   

17.
Summary The fine structure of the testicular interstitium was studied in normal adult golden hamsters sacrificed in the reproductive season (spring and summer) and in the winter. The Leydig cells in the reproductively active testes contain abundant endoplasmic reticulum (ER) and numerous mitochondria. The ER occurs in the form of flattened cisternae and tubules, the former prevailing. The cisternae are extremely extensive and are partly granular and partly agranular, their ends being continuous with the tubular reticulum. Mitochondria intervening between the cisternae are closely associated with the agranular portions of the latter. Adjacent to the Golgi complex and continuous with the centrosome a unique filamentous body with a dense laminar core is often observed. In the regressive testes, the Leydig cells show a great reduction of cytoplasmic volume and a remarkable decline of the organelles, especially agranular tubules. The possible functional significance of the tubular and cisternal ER with the associated mitochondria is discussed in relation to the biosynthesis of androgens. Macrophages appear to constitute another important population of the interstitial cell clusters.This study was supported in part by a grant from the National Science Council, the Republic of China  相似文献   

18.
Summary The organization of testicular interstitial tissue of the spinifex hopping mouse, Notomys alexis differs from that of other rodents. It comprises between 10.3% and 17.3% (average 15.0%) of the total testicular volume, and is variable in its organization both at different locations within the testis of the one animal and among different individuals. Abundant, closely packed Leydig cells are usually present; however, in some regions large, thick-walled blood vessels and extensive peritubular lymphatic spaces, often lacking an endothelium adjacent to the Leydig cells, are also prominent. The Leydig cells in contact with the large blood vessels and lymphatics, unlike those in regions where lymph is sparse, are not densely packed and sometimes contain numerous lipid droplets. Ultrastructure of Leydig cells is typical of steroid-producing cells; however, mitochondria are often extremely large, unusual in shape or bizarely arranged in relation to one another. Also electrondense bodies displaying a paracrystalline-like internal structure of parallel, electron-dense filaments arranged in a lattice pattern occur in the cytoplasm of many cells. The significance of these unusual ultrastructural features and the organization of the interstitial tissue remain to be determined conclusively, but may relate to steroid synthesis, secretion and uptake.  相似文献   

19.
Summary The intertubular stroma of the bovine testis is composed of narrow strands between two adjacent tubules and larger tri- and quadrangular interstices between three to four tubules. The latter contain the majority of Leydig cells, larger blood vessels and testicular lymph vessels. Ley dig cells occur in groups or cords, not every cell being in close contact to a capillary, lymph vessel or venule. Between adjacent Leydig cells intercellular canaliculi and gap junctions are frequently encountered. Bovine Leydig cells are further characterized by an abundance of ribosome-associated endoplasmic reticulum, by mitochondria often containing crystalloid structures and displaying both tubular and lamelliform cristae, as well as by a relative paucity of lipid droplets and lysosomes. Independent of the size of intertubular lymph vessels their walls consist only of an endothelium of varying thickness, no typical basal lamina or associated musculature being present. The interstitial surface of the endothelium sends anchoring cytoplasmic pedicles into the subjacent ground substance and collagen fibrils. Among occasional plasma cells, mast cells and mononuclear leucocytes, a regular constituent of the intertubular region studied is a population of electron-lucid, irregularly shaped cells (light intercalated cells = LIC) with slender, pleomorphic processes. These cells are believed to be involved in testicular androgen storage and distribution.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

20.
The basement membranes of developing Leydig cells in fetal and newborn testis of rat were studied by ultrastructural and immunocytochemical methods. Fetal-type Leydig cells in prenatal rats were organized in irregularly outlined groups in the interstitium and were extensively surrounded by ultrastructurally identifiable basement membranes and immunocytochemically localized laminin and collagen type IV. Prenatal Leydig cell precursors had small patches of laminin and collagen type IV on their surfaces, which indicated that changes in extracellular matrix took place during their differentiation to mature fetal-type Leydig cells. Additionally, ultrastructural evidence was obtained for a basement membrane surrounding the fetal human Leydig cells similar to that in fetal rats. Soon after birth the rat fetal-type cells gathered into distinct clusters surrounded by delicate envelope cells and a discontinuous basement membrane. Basement-membrane structures, laminin, and collagen type IV were observed between the clustered cells as well. The basement membranes covering large cell surface areas of the fetal-type Leydig cells in fetal and newborn rats differed from those of the adult-type cells, which, according to our earlier study, are covered only by small patches of basement membrane. The difference between the basement membranes of the fetal- and adult-type rat Leydig cells further supports the concept of two different Leydig cell populations. The earlier findings of the epithelial nature of the Leydig cells agree with the observation of basement membranes in the Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号