首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A fluorescence microscopy technique has been developed to visualize the behavior of individual DNA and protein molecules. Real-time direct observation of a single DNA molecule can be used to investigate the dynamics of DNA-protein interactions, such as the DNA digestion reaction by lambda exonuclease. In conventional methods it is impossible to analyze the dynamics of an individual lambda exonuclease molecule on a DNA because they can only observe the average behavior of a number of exonuclease molecules. Observation of a single molecule, on the other hand, can reveal processivity and binding rate of an individual exonuclease molecule. To evaluate the dynamics of lambda exonuclease, a stained lambda DNA molecule with one biotinylated terminal was fixed on an avidin-coated coverslip and straightened using a d.c. electric field. Microscopic observation of digestion of a straightened DNA molecule by lambda exonuclease revealed that the DNA digestion rate was approximately 1000 bases/s and also demonstrated high processivity.  相似文献   

2.
λ Exonuclease is a highly processive 5′→3′ exonuclease that degrades double-stranded (ds)DNA. The single-stranded DNA produced by λ exonuclease is utilized by homologous pairing proteins to carry out homologous recombination. The extensive studies of λ biology, λ exonuclease enzymology and the availability of the X-ray crystallographic structure of λ exonuclease make it a suitable model to dissect the mechanisms of processivity. λ Exonuclease is a toroidal homotrimeric molecule and this quaternary structure is a recurring theme in proteins engaged in processive reactions in nucleic acid metabolism. We have identified residues in λ exonuclease involved in recognizing the 5′-phosphate at the ends of broken dsDNA. The preference of λ exonuclease for a phosphate moiety at 5′ dsDNA ends has been established in previous studies; our results indicate that the low activity in the absence of the 5′-phosphate is due to the formation of inert enzyme–substrate complexes. By examining a λ exonuclease mutant impaired in 5′-phosphate recognition, the significance of catalytic efficiency in modulating the processivity of λ exonuclease has been elucidated. We propose a model in which processivity of λ exonuclease is expressed as the net result of competition between pathways that either induce forward translocation or promote reverse translocation and dissociation.  相似文献   

3.
Reaction intermediates formed during the degradation of linear PM2, T5, and λ DNA by herpes simplex virus (HSV) DNase have been examined by agarose gel electrophoresis. Digestion of T5 DNA by HSV type 2 (HSV-2) DNase in the presence of Mn2+ (endonuclease only) gave rise to 6 major and 12 minor fragments. Some of the fragments produced correspond to those observed after cleavage of T5 DNA by the single-strand-specific S1 nuclease, indicating that the HSV DNase rapidly cleaves opposite a nick or gap in a duplex DNA molecule. In contrast, HSV DNase did not produce distinct fragments upon digestion of linear PM2 or λ DNA, which do not contain nicks. In the presence of Mg2+, when both endonuclease and exonuclease activities of the HSV DNase occur, most of the same distinct fragments from digestion of T5 DNA were observed. However, these fragments were then further degraded preferentially from the ends, presumably by the action of the exonuclease activity. Unit-length λ DNA, EcoRI restriction fragments of λ DNA, and linear PM2 DNA were also degraded from the ends by HSV DNase in the same manner. Previous studies have suggested that the HSV exonuclease degrades in the 3′ → 5′ direction. If this is correct, and since only 5′-monophosphate nucleosides are produced, then HSV DNase should “activate” DNA for DNA polymerase. However, unlike pancreatic DNase I, neither HSV-1 nor HSV-2 DNase, in the presence of Mg2+ or Mn2+, activated calf thymus DNA for HSV DNA polymerase. This suggests that HSV DNase degrades both strands of a linear double-stranded DNA molecule from the same end at about the same rate. That is, HSV DNase is apparently capable of degrading DNA strands in the 3′ → 5′ direction as well as in the 5′ → 3′ direction, yielding progressively smaller double-stranded molecules with flush ends. Except with minor differences, HSV-1 and HSV-2 DNases act in a similar manner.  相似文献   

4.
DNA polymerase ε (pol ε) is believed to be the leading strand replicase in eukaryotes whereas pols λ and β are thought to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP) site). We have previously reported that human pols λ, β and η can perform translesion synthesis (TLS) of an AP site in the presence of pol ε. In the case of pol λ and β, this TLS requires the presence of a gap downstream from the product synthetized by the ε replicase. However, since these studies were conducted exclusively with a linear DNA template, we decided to test whether the structure of the template could influence the capacity of the pols ε, λ, β and η to perform TLS of an AP site. Therefore, we have investigated the replication of damaged “minicircle” DNA templates. In addition, replication of circular DNA requires, beyond DNA pols, the processivity clamp PCNA, the clamp loader replication factor C (RFC), and the accessory proteins replication protein A (RPA). Finally we have compared the capacity of unmodified versus monoubiquitinated PCNA in sustaining TLS by pols λ and η on a circular template. Our results indicate that in vitro gap-directed TLS synthesis by pols λ and β in the presence of pol ε, RPA and PCNA is unaffected by the structure of the DNA template. Moreover, monoubiquitination of PCNA does not affect TLS by pol λ while it appears to slightly stimulate TLS by pol η.  相似文献   

5.
Some Properties of DNA from Phage-Infected Bacteria   总被引:15,自引:0,他引:15  
Replicating T5 or λ phage DNA has been labeled by adding tritiated thymidine for short periods to cultures of phage-infected Escherichia coli before isolation of intracellular DNA. Two procedures are described for separating T5 replicating DNA from DNA of intracellular phage particles. Both T5 and λ replicating DNA had the same bouyant density in cesium chloride as DNA from phage particles but sedimented faster when centrifuged in sucrose density gradients. The fast sedimentation did not appear to be caused by DNA protein or DNA-RNA complexes or by aggregation of DNA, but is probably due to DNA molecules of unusual structure. Experiments involving hydrodynamic shear and sucrose density gradient centrifugation at alkaline pH have suggested that with λ the replicating form of DNA is a linear molecule considerably longer than the DNA molecules of λ-phage particles. The constituent polynucleotide chains of λ but not T5 replicating DNA also appear to be longer than those of phage DNA.  相似文献   

6.
Behavior of DNA fibers stretched by precise meniscus motion control   总被引:2,自引:0,他引:2       下载免费PDF全文
A modified DNA combing method, which can precisely locate straightened DNA fibers on a substrate, has been developed. Precise motion control of a DNA solution droplet on hydrophobic surfaces has allowed detailed analyses of DNA straightening behavior. Our method provides a technique for consistently straightening λ phage DNA on a trace of droplet motion, though the straightened DNAs had several variations in their alignments. The dependence of the straightened DNA frequency upon motion rate, fluidity in the droplet and environmental humidity was investigated. Visualization of the solution flow in the moving droplet indicated that flows circulating parallel to the contour of the droplet markedly bias the direction of straightening in relation to the site in the droplet. As a result, the alignment variations caused by the site specificity of the bias direction revealed that environmental humidity significantly alters the straightening behavior.  相似文献   

7.
Nanopores have become an important tool for molecule detection at single molecular level. With the development of fabrication technology, synthesized solid-state membranes are promising candidate substrates in respect of their exceptional robustness and controllable size and shape. Here, a 30–60 (tip-base) nm conical nanopore fabricated in 100 nm thick silicon nitride (Si3N4) membrane by focused ion beam (FIB) has been employed for the analysis of λ-DNA translocations at different voltage biases from 200 to 450 mV. The distributions of translocation time and current blockage, as well as the events frequencies as a function of voltage are investigated. Similar to previously published work, the presence and configurations of λ-DNA molecules are characterized, also, we find that greater applied voltages markedly increase the events rate, and stretch the coiled λ-DNA molecules into linear form. However, compared to 6–30 nm ultrathin solid-state nanopores, a threshold voltage of 181 mV is found to be necessary to drive DNA molecules through the nanopore due to conical shape and length of the pore. The speed is slowed down ∼5 times, while the capture radius is ∼2 fold larger. The results show that the large nanopore in thick membrane with an improved stability and throughput also has the ability to detect the molecules at a single molecular level, as well as slows down the velocity of molecules passing through the pore. This work will provide more motivations for the development of nanopores as a Multi-functional sensor for a wide range of biopolymers and nano materials.  相似文献   

8.
Upon denaturation, T5 DNA yields a large number of discrete, single-chain fragments that can be resolved by agarose gel electrophoresis. The positions of the more prominent of these fragments in the T5 duplex were determined by analyzing their sensitivity to digestion with λ exonuclease and their distribution among EcoRI fragments of T5 DNA. These experiments also provide firm evidence concerning the polarity of the strands in T5 DNA. An analogous study was carried out on the fragments produced by treating exonuclease III-degraded T5 DNA with the single-strand-specific SI endonuclease. This procedure yielded over 40 discrete duplex fragments that could be resolved with considerable precision by agarose gel electrophoresis. The positions of most of these fragments were determined by analyzing EcoRI fragments of T5st(+) and T5st(0) DNA. Over 20 sites where single-chain interruptions can occur in T5 DNA were identified, and the distribution of interruptions within the terminal repetition was shown to be identical at both ends of the molecule. A precise value for the size of the terminal repetition in T5 DNA was obtained by analyzing SI endonuclease digests of ligase-repaired, circular T5 DNA in agarose gels. The repeated segment represented 8.3% of the T5st(+) DNA. The results of this study also provide information concerning the properties of λ exonuclease. Hydrolysis by this enzyme was not terminated when single-chain interruptions were encountered either in the strand being degraded or in the complementary strand.  相似文献   

9.
Promiscuous mismatch extension by human DNA polymerase lambda   总被引:2,自引:1,他引:1  
DNA polymerase lambda (Pol λ) is one of several DNA polymerases suggested to participate in base excision repair (BER), in repair of broken DNA ends and in translesion synthesis. It has been proposed that the nature of the DNA intermediates partly determines which polymerase is used for a particular repair reaction. To test this hypothesis, here we examine the ability of human Pol λ to extend mismatched primer-termini, either on ‘open’ template-primer substrates, or on its preferred substrate, a 1 nt gapped-DNA molecule having a 5′-phosphate. Interestingly, Pol λ extended mismatches with an average efficiency of ≈10−2 relative to matched base pairs. The match and mismatch extension catalytic efficiencies obtained on gapped molecules were ≈260-fold higher than on template-primer molecules. A crystal structure of Pol λ in complex with a single-nucleotide gap containing a dG·dGMP mismatch at the primer-terminus (2.40 Å) suggests that, at least for certain mispairs, Pol λ is unable to differentiate between matched and mismatched termini during the DNA binding step, thus accounting for the relatively high efficiency of mismatch extension. This property of Pol λ suggests a potential role as a ‘mismatch extender’ during non-homologous end joining (NHEJ), and possibly during translesion synthesis.  相似文献   

10.
Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼3000 small molecules, including one comprising ∼600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress.  相似文献   

11.
Adenovirus 5 DNA-protein complex is isolated from virions as a duplex DNA molecule covalently attached by the 5' termini of each strand to virion protein of unknown function. The DNA-protein complex can be digested with E. coli exonuclease III to generate molecules analogous to DNA replication intermediates in that they contain long single stranded regions ending in 5' termini bound to terminal protein. The infectivity of pronase digested Adenovirus 5 DNA is greatly diminished by exonuclease III digestion. However, the infectivity of the DNA-protein complex is not significantly altered when up to at least 2400 nucleotides are removed from the 3' ends of each strand. This indicates that the terminal protein protects 5' terminated single stranded regions from digestion by a cellular exonuclease. DNA-protein complex prepared from a host range mutant with a mutation mapping in the left 4% of the genome was digested with exonuclease III, hybridized to a wild type restriction fragment comprising the left 8% of the genome, and transfected into HeLa cells. Virus with wild type phenotype was recovered at high frequency.  相似文献   

12.
Stretching or aligning DNA molecules onto a surface by means of molecular combing techniques is one of the critical steps in single DNA molecule analysis. However, many of the current studies have focused on λ-DNA, or other large DNA molecules. There are very few studies on stretching methodologies for DNA molecules generated via PCR (typically smaller than 20 kb). Here we describe a simple method of stretching DNA molecules up to 18 kb in size on a modified glass surface. The very low background fluorescence allows efficient detection of single fluorescent dye labels incorporated into the stretched DNA molecules.  相似文献   

13.
14.
15.
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.  相似文献   

16.
The Arrangement of Information in DNA Molecules   总被引:12,自引:2,他引:10       下载免费PDF全文
The anatomy of DNA molecules isolated from mature bacteriophage is reviewed. These molecules are linear, duplex DNA consisting mainly of uninterrupted polynucleotide chains. Certain phage (T5 and PB) contain four specifically located interruptions. While the nucleotide sequence of most of these molecules is unique (T5, T3, T7, λ), some are circular permutations of each other (T2, T4, P22). Partial degradation of these DNA molecules by exonuclease III predisposes some of them to form circles upon annealing, but indicating they are terminally redundant.  相似文献   

17.
18.
Tethered particle motion (TPM) monitors the variations in the effective length of a single DNA molecule by tracking the Brownian motion of a bead tethered to a support by the DNA molecule. Providing information about DNA conformations in real time, this technique enables a refined characterization of DNA-protein interactions. To increase the output of this powerful but time-consuming single-molecule assay, we have developed a biochip for the simultaneous acquisition of data from more than 500 single DNA molecules. The controlled positioning of individual DNA molecules is achieved by self-assembly on nanoscale arrays fabricated through a standard microcontact printing method. We demonstrate the capacity of our biochip to study biological processes by applying our method to explore the enzymatic activity of the T7 bacteriophage exonuclease. Our single molecule observations shed new light on its behaviour that had only been examined in bulk assays previously and, more specifically, on its processivity.  相似文献   

19.
After ultraviolet light induction of Escherichia coli K-12 strain W3350(λ), several structural intermediate forms of phage deoxyribonucleic acid (DNA) are synthesized. The early defective lysogens of λ, sus O8, sus P3, and T11, were found to synthesize none of the DNA structural intermediates. A lysogen believed to be defective in all known phage activities, λsus N7, was found to be able to synthesize an early phage DNA intermediate. The lysogen λsus Q21, defective in late phage functions, is able to synthesize the early phage DNA intermediate and a concatenated molecule of greater molecular weight than the mature λ DNA.  相似文献   

20.
Lambda exonuclease processively degrades one strand of double-stranded DNA (dsDNA) in the 5"-3" direction. To understand the mechanism through which this enzyme generates high processivity we are analyzing the first step in the reaction, namely the interaction of lambda exonuclease with the ends of substrate DNA. Endonuclease mapping of lambda exonuclease bound to DNA has shown that the enzyme protects approximately 13-14 bp on dsDNA, and no nucleo-tides on the single-stranded tail of the DNA product. We have developed a rapid fluorescence-based assay using 2-aminopurine and measured the steady-state rate constants for different end-structures of DNA. The relative k(cat)for 5" ends decreases in the order 5" recessed > blunt >> 5" overhang. However, k(cat)/K(m)remains relatively constant for these different structures suggesting they are all used equally efficiently as substrates. From these data we propose that a single-stranded 5" overhang end can bind non-productively to the enzyme and the non-hydrolyzed strand is required to aid in the proper alignment of the 5" end. We have also measured the length-dependence of the steady-state rate para-meters and find that they are consistent with a high degree of processivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号