首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A M Duncan 《Mutation research》1986,173(3):201-205
Individuals known to carry the mutation for the fragile X syndrome can sometimes be identified cytogenetically by the presence of a fragile site on the X chromosome at q27.3. The frequency of cells bearing this fragile site is known to be enhanced by culturing the cells in folic acid deficient medium and/or by introducing folic acid metabolism inhibitors such as FUdR. In this study FUdR induction of chromosomal aberrations other than the fragile X was investigated. Lymphoblastoid cells from an obligate carrier, a mentally retarded male and a control were cultured in folic acid deficient medium in the presence of FUdR and harvested at various times after culture initiation. The frequency of chromosome and chromatid breaks was found to be higher in cells from the individuals carrying the mutation for the fragile X syndrome. The frequency of micronuclei, an indirect index of chromosome breakage, was also more elevated in cells from these individuals than in cells from the control. These findings are of potential importance to carrier detection of this common genetic disorder.  相似文献   

2.
Summary Fibroblasts from a heterozygous carrier for the Martin-Bell syndrome, who manifests the fragile site Xq27, were cloned to separate the population carrying the primary defect on the active X chromosome from the population with this defect on the inactive X. Clones with this defect on the active X manifest the fra(X)(q27) whereas clones from the other population are fra(X)-negative (Steinbach et al. 1983b). In this project, the replication status of the X chromosome manifesting the fra(X)(q27) was studied in seven clones with this defect on the active X.The results obtained on the clones were very similar to the results obtained from uncloned fibroblasts and lymphocytes. In the clones the fragile site was found manifested on the early replicating X in 73 cells and on the late replicating X in four cells.Since the defect is located on the active X chromosome of these cells the manifestation of the fragile site on the late replicating X suggests that the defect and the fragile site cannot be identical. It is concluded that there is no obligate synteny of this defect and the manifested fragile site.  相似文献   

3.
The effect of chromosome condensation on the frequency of expression of the fragile X chromosome was examined. Chromosome decondensation substances were tested for their ability to elicit expression or improve frequencies of expression of the fragile X chromosome in five patients. The substances tested included the AT specific DNA ligands ethidium bromide, Hoechst 33258, and netropsin, and the GC specific substances actinomycin D and olivomycin. Under culture conditions appropriate for eliciting fragile X expression none of the decondensation compounds studied significantly altered frequencies of expression, nor did any of the substances elicit fragile X expression under conditions that normally suppress fragile X expression. The fragile X was found to be more frequently evident in less condensed chromosome preparations from fibroblasts. The implications of these findings with respect to the nature of fragile sites are discussed.  相似文献   

4.
Summary A fragile site on chromosome 12, at 12q24.13, was found in the lymphocytes of two members of a family during the study for detection of a fragile X chromosome. The site was found to be heritable and folate-sensitive, and it fulfills all four criteria for a fragile site. It thus can now be confirmed as the heritable fragile site FRA12C.  相似文献   

5.
Summary The IQ levels of 18 female carriers with the marker X chromosome were evaluated, and cytogenetic studies after BrdU incorporation were performed. A highly significant correlation between mental capacity and replication pattern of the X chromosomes could be demonstrated. Heterozygous females with normal intelligence showed a clear tendency to carry the fragile site at the late replicating X chromosome, while other female carriers with lower intelligence or mental impairment expressed their fragile site mainly with the early replicating X chromosome. This observation could be interpreted as an expression of Lyonisation.  相似文献   

6.
Isolation of a human DNA sequence which spans the fragile X   总被引:3,自引:0,他引:3       下载免费PDF全文
To identify the sequences involved in the expression of the fragile X and to characterize the molecular basis of the genetic lesion, we have constructed yeast artificial chromosomes (YACs) containing human DNA and have screened them with cloned DNA probes which map close to the fragile site at Xq27.3. We have isolated and partly characterized a YAC containing approximately 270 kb of human DNA from an X chromosome which expresses the fragile X. This sequence in a yeast artificial ring chromosome, XTY26, hybridizes to the two closest DNA markers, VK16 and Do33, which flank the fragile site. The human DNA sequence in XTY26 also spans the fragile site on chromosome in situ hybridization. When a restriction map of XTY26, derived by using infrequently cutting restriction enzymes, is compared with similar YAC maps derived from non-fragile-X patients, no large-scale differences are observed. This YAC, XTY26, may enable (a) the fragile site to be fully characterized at the molecular level and (b) the pathogenetic basis of the fragile-X syndrome to be determined.  相似文献   

7.
The cytogenetic study of 182 river buffalo (Bubalus bubalis L., 2n = 50) of Murrah, Mediterranean and Jaffarabadi breeds, from the State of S?o Paulo, was carried out to characterize their chromosomes and to detect possible chromosomal abnormalities. The karyotypes were indistinguishable with conventional staining as well as with C and replication R banding techniques. In about 44% of the sample (8 males and 72 females), an X marker chromosome due to a fragile site was shown. The frequency of metaphases expressing the fragility site on the X was highly variable, from 2.86 to 41.03%. In females, the fragile site, rarely appeared on both X chromosomes. Most of the metaphases showed only 1 marker chromosome. In R-banded metaphases using 5-bromodeoxyuridine (BrdU) treatment, it corresponded in general to the late replicating X chromosome. No correlation between the X fragile site and altered phenotype was found. Structural and numerical chromosome rearrangements were ruled out in the present sample of buffalo.  相似文献   

8.
Chromosome breakage and recombination at fragile sites.   总被引:15,自引:0,他引:15       下载免费PDF全文
Chromosomal fragile sites are points on chromosomes that usually appear as nonstaining chromosome or chromatid gaps. It has frequently been suggested that fragile sites may be involved in chromosome breakage and recombination events. We and others have previously shown that fragile sites predispose to intrachromosomal recombination as measured by sister-chromatid exchanges. These findings suggested that fragile site expression often, if not always, is accompanied by DNA strand breakage. In the present report, fragile sites are shown to predispose to deletions and interchromosomal recombination. By use of somatic cell hybrids containing either human chromosome 3 or the fragile X chromosome, deletions and translocations were induced by FUdR or aphidicolin with breakpoints at the fragile sites Xq27 or 3p14.2 (FRA3B) or at points so close to the fragile sites as to be cytogenetically indistinguishable. Southern blot analysis of DNA from a panel of chromosome 3 deletion and translocation hybrids was then utilized to detect loss or retention of markers flanking FRA3B and to corroborate the cytogenetic evidence that the breakpoints were at this fragile site. One cell line with a reciprocal translocation between human chromosome 3 (with breakpoint at 3p14.2) and a hamster chromosome showed cytogenetically that the fragile site was expressed on both derivative chromosomes, supporting the hypothesis that the fragile site represents a repeated sequence. The approach described provides a means of generating specific rearrangements in somatic cell hybrids with a breakpoint at a fragile site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary Genetic linkage data from loci around the fragile X locus at Xq27.3 are analysed in the light of the hypothesis of Pembrey et al. (1985) concerning the generation of the fragile X mutation. Recombination between the four loci 52A, F9, fragile X, and ST14 is significantly decreased in meioses giving rise to the affected grandsons of normal transmitting males, when compared to families where there are no apparent normal transmitting males. There are at least two possible explanations for this phenomenon. Either the established fragile site at Xq27.3 promotes increased recombination in the distal part of the X chromosome as a secondary event, unrelated to the mechanism of formation of the fragile site itself, or an event involving recombination at or around Xq27.3 is the mechanism of formation of the full fragile X mutation, and the decreased recombination seen amongst flanking marker loci in meioses giving rise to the affected grandsons of normal transmitting males is the result of interference.  相似文献   

10.
The folate-sensitive fragile site FRAXE is located in proximal Xq28 of the human X chromosome and lies approximately 600 kb distal to the fragile X syndrome (FRAXA) fragile site at Xq27.3. The cytogenetic expression of FRAXE is thought to be associated with mental handicap, but this is usually mild compared to that of the more common fragile X syndrome that is associated with the expression of the FRAXA fragile site. The exact incidence of FRAXE mental retardation is uncertain. We describe here the results of a U.K. survey designed to assess the frequency of FRAXE in a population of individuals referred for fragile X syndrome testing and found to be negative for expansion events at the FRAXA locus. No FRAXE expansion events were found in 362 cytogenetically negative males studied, and one expansion event was identified in a sample of 534 males for whom cytogenetic analyses were either unrecorded or not performed. Further FRAXE expansion events were detected in two related females known to be cytogenetically positive for a fragile site in Xq27.3-28. To gain insight into the FRAXE phenotype, the clinical details of the identified FRAXE male plus three other FRAXE individuals identified through previous referrals for fragile X syndrome testing are presented. For the population studied, we conclude that FRAXE mental retardation is a relatively rare but significant form of mental retardation for which genetic diagnosis would be appropriate.  相似文献   

11.
The most common genetic cause of mental retardation after Down's syndrome, the fragile X syndrome, is associated with the occurrence of a fragile site at Xq27.3. This X-linked disease is intriguing because transmission can occur through phenotypically normal males. Theories to explain this unusual phenomenon include genomic rearrangements and methylation changes associated with a local block of reactivation of the X chromosome. Using microdissected markers close to the fragile site, we have been able to test these hypotheses. We present evidence for the association of methylation with the expression of the disease. However, there is no simple relationship between the degree of methylation and either the level of expression of the fragile site or the severity of the clinical phenotype.  相似文献   

12.
Fragile X syndrome, associated with the fragile X chromosome, is the most common cause of familial mental retardation. A breakthrough has been made in molecular biological research into the fragile X site. In this review we describe the molecular investigations that have led to the isolation of the FMR-1 gene. The nature of the fragile X mutation as well as the implications of the DNA test for the mutation are discussed.  相似文献   

13.
Summary The coagulation factor IX gene and two other polymorphic loci corresponding to DNA probes 52 A and St 14 have been previously localized in the q27 to qter region of the human X chromosome. In order to study their localization with respect to the fragile site at Xq27-28, we have hybridized the three DNA probes to metaphase chromosomes of a boy with fragile X mental retardation. We show that probe 52A is located in the proximal part of the Xq27 band, while the coagulation factor IX gene is on the distal part of this band, but proximal to the fragile site. The very polymorphic St 14 probe is located in the distal part of the Xq28 band, on the other side of the fragile site.  相似文献   

14.
In cells of fragile X patients, the changed X segment may appear as a poorly staining region or a gap, or as a deletion, involving one or both chromatids. To find out whether the fragile site represents ah incompletely replicated DNA sequence, as has been suggested recently, we analyzed the four chromatids of methotrexate-induced endoreduplicated fragile X chromosomes. Our main observations were: (1) a deleted chromatid was never internal to a poorly staining one; (2) an endoreduplicated X chromosome with a fragile site never included a normal chromatid. These results can be explained by assuming that DNA at the fragile site, when replicated in the presence of methotrexate, may undergo defective replication and give rise to improperly packaged chromatin, appearing as a chromatid with a poorly staining region or a gap in the following metaphase. The same DNA may fail to function as a template in the following S-phase and give rise to a chromatid with a single-stranded segment, appearing as a deleted chromatid in the following metaphase.Dedicated to the memory of Professor Menashe Marcus, teacher, colleague, arid friend  相似文献   

15.
We report the identification of a new RFLP detected by the DNA probe MN12, which is linked to both the fragile site on the X chromosome at Xq27.3 and the highly polymorphic locus detected by St14 (DXS52). In situ mapping confirms the localisation of MN12 distal to the fragile site. A detailed physical analysis of this region of the X chromosome using pulsed-field gel electrophoresis has shown that MN12, St14 and DX13 (DXS15) are physically linked within a region of 470kb. A long range restriction map around the MN12 locus reveals at least two candidate HTF islands, suggesting the existence of expressed sequences in this region.  相似文献   

16.
Summary The major concept of fragile X pathogenesis postulates that the fragile site at band Xq27.3 [fra(X)] represents the primary defect. The expression of fra(X) is predicted to be an intrinsic property of the mutated chromosome and, hence, should not be suppressed by X inactivation in females or induced by X-linked trans-acting factors. We made fibroblast clones of a fra(X)-positive female. Monoclonality was demonstrated using the DNA methylation assay at DXS255. The mutated X chromosomes and their states of genetic activity in the different clones were also defined by molecular methods. Five clones were selected to induce expression of fra(X) by 10-7 M FUdR; two carried an active mutated X chromosome, in the other three the mutated X chromosome was inactivated. Fra(X) was found expressed in both types of clones. The percentages of positive cells were as high as 7–10%, regardless of the genetic activity of the mutated X chromosomes. DNA replicating patterns, obtained by BUdR labelling, demonstrated that expression occurred only on the mutated X chromosomes previously identified by molecular methods. The concept that the fragile site represents the primary mutation is now strongly supported by experimental evidence. The expression of fra (X) in females is independent of X inactivation and other trans-acting factors.  相似文献   

17.
Summary We report an extended family in which two brothers with a fragile X chromosome are mentally retarded while a third brother with the fragile site is both phenotypically and mentally normal. The study of six probes detecting restriction fragment length polymorphisms on either sides of the fragile site Xq27 confirmed that the fragile X regions inherited by these three brothers were identical from DXS 102 to the telomere. These data highlight the heterogeneity of the fragile X syndrome, which is discussed in the framework of the different hypotheses previously proposed.  相似文献   

18.
Chinese hamster lung (CHL) V79 cells already deficient in hypoxanthine phosphoribosyltransferase were exposed to uv light and selected for mutations causing deficiency of thymidylate synthase (TS) by their resistance to aminopterin in the presence of thymidine and limiting amounts of methyl tetrahydrofolate. Three of seven colonies chosen for initial study were shown to be thymidylate synthase deficient (TS-) by enzyme assay, thymidine auxotrophy, and their inability to incorporate labeled deoxyuridine into their DNA in vivo. Complementation analysis of human X TS- hamster hybrids revealed that TS activity segregated with human chromosome 18. Southern analysis of a panel of 14 human X hamster hybrids probed with complementary DNA from mouse TS confirmed the chromosome assignment of TS to human chromosome 18; quantitative Southern blotting using unbalanced human cell lines further localized the gene to 18q21.31----qter. Another hybrid was generated that contained a human X chromosome with the Xq28 folate-dependent fragile site as its only human chromosome in a hamster TS- background. The fragile site could be easily and reproducibly expressed in this hybrid without the use of antimetabolites simply by removing exogenous thymidine from the medium. These TS-deficient cells are useful for: somatic cell genetics as a unique selectable marker for human chromosome 18, studies on regulation of the TS gene, and analysis of the fragile (X) chromosome and other folate-dependent fragile sites.  相似文献   

19.
The number and morphology of X chromosomes were analysed in tetraploid cells induced with colcemid in cultured blood lymphocytes obtained from a patient with fra(X) syndrome of mental retardation. In contrast to diploid cells containing fra(X) chromosome in 22.7% of cells, the marker X was found in 51.6% of tetraploids, each cell containing only one fragile X out of the two expected ones. The data obtained indicate an extreme lability of the expression of fragile site (X) (q 27) in consecutive lymphocyte generation.  相似文献   

20.
Folate-sensitive fragile sites have been demonstrated on the X chromosome of the Indian mole rat, Nesokia indica (subfamily Murinae), utilizing peripheral blood lymphocyte cultures. All normal female individuals expressed fragile sites on the constitutive heterochromatic long arm of one of their two X chromosomes (heterozygous expression); in contrast, no fragile sites were found on the single X chromosome of normal males. Preferential transmission of the maternal fragile X to the daughters is therefore suggested. Four sites have been detected so far: fra Xq1, fra Xq2, fra Xq3, and fra Xc (centromeric). It is significant that their location corresponds to the regions where constitutive heterochromatic deletions occur that result in a variety of polymorphic X chromosomes in natural populations of Nesokia. Thus there is a correlation between fragile sites, deletion sites, and karyotypic changes. In individuals that did not reproduce in the laboratory, there were more fragile sites on both X chromosomes of the females (homozygous/double heterozygous expression) and also on the X of the males (hemizygous expression). This difference in fragile site expression from the normal situation could be attributed to one or more new mutations. However, the mechanism by which fragile sites influence reproductive performance is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号