首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many plant species exhibit a reduced range of flower colors due to the lack of an essential gene or to the substrate specificity of a biosynthetic enzyme. Petunia does not produce orange flowers because dihydroflavonol 4-reductase (DFR) from this species, an enzyme involved in anthocyanin biosynthesis, inefficiently reduces dihydrokaempferol, the precursor to orange pelargonidin-type anthocyanins. The substrate specificity of DFR, however, has not been investigated at the molecular level. By analyzing chimeric DFRs of Petunia and Gerbera, we identified a region that determines the substrate specificity of DFR. Furthermore, by changing a single amino acid in this presumed substrate-binding region, we developed a DFR enzyme that preferentially reduces dihydrokaempferol. Our results imply that the substrate specificity of DFR can be altered by minor changes in DFR.  相似文献   

2.
The residues L40, A113, V291, and V294, in leucine dehydrogenase (LeuDH), predicted to be involved in recognition of the substrate side chain, have been mutated on the basis of the molecular modeling to mimic the substrate specificities of phenylalanine (PheDH), glutamate (GluDH), and lysine dehydrogenases (LysDH). The A113G and A113G/V291L mutants, imitating the PheDH active site, displayed activities toward -phenylalanine and phenylpyruvate with 1.6 and 7.8% of kcat values of the wild-type enzyme for the preferred substrates, -leucine and its keto-analog, respectively. Indeed, the residue A113, corresponding to G114 in PheDH, affects the volume of the side-chain binding pocket and has a critical role in discrimination of the bulkiness of the side chain. Another two sets of mutants, substituting L40 and V294 of LeuDH with the corresponding residues predicted in GluDH and LysDH, were also constructed and characterized. Emergence of GluDH and LysDH activities in L40K/V294S and L40D/V294S mutants, respectively, indicates that the two corresponding residues in the active site of amino acid dehydrogenases are important for discrimination of the hydrophobicity/polarity of the aliphatic substrate side chain. All these results demonstrate that the substrate specificities of the amino acid dehydrogenases can be altered by protein engineering. The engineered dehydrogenases are expected to be used for production and detection of natural and non-natural amino acids.  相似文献   

3.
A single residue of the NAD(H)-dependent lactate dehydrogenase (LDH) from Bacillus stearothermophilus has been changed in order to decrease substrate inhibition. The conserved aspartic acid residue at position 52 was replaced by glutamate using site-directed mutagenesis. The effect on substrate inhibition was measured. In the glutamate-52 mutant substrate inhibition is decreased twofold.  相似文献   

4.
Site-directed mutagenesis in the active site of Thermoactinomyces vulgaris carboxypeptidase T (CpT), which is capable of hydrolyzing both hydrophobic and positively charged substrates, resulted in five mutants: CpT1 (A243G), CpT2 (D253G/T255D), CpT3 (A243G/D253G/T255D), CpT4 (G207S/A243G/D253G/T255D), and CpT5 (G207S/A243G/T250A/D253G/T255D). These mutants step-by-step reconstruct the primary specificity pocket of carboxypeptidase B (CpB), which is capable of cleaving only positively charged C-terminal residues. All of the mutants retained the substrate specificity of the wild-type CpT. Based on comparison of three-dimensional structures of CpB and the CpT5 model, it was suggested that the lower affinity of CpT5 for positively charged substrates than the affinity of CpB could be caused by differences in nature and spatial location of Leu247 and Ile247 and of His68 and Asp65 residues in CpT and CpB, respectively, and also in location of the water molecule bound with Ala250. An additional hydrophobic region was detected in the CpT active site formed by Tyr248, Leu247, Leu203, Ala243, CH3-group of Thr250, and CO-groups of Tyr248 and Ala243, which could be responsible for binding hydrophobic substrates. Thus, notwithstanding the considerable structural similarity of CpT and pancreatic carboxypeptidases, the mechanisms underlying their substrate specificities are different.  相似文献   

5.
New determinants of Thermoactinomyces vulgaris carboxypeptidase T (CPT) substrate specificity--structural calcium ions and Leu254 residue--were found by means of steady-state kinetics and site-directed mutagenesis. The removal of calcium ions shifted the selectivity profile of hydrolysis of tripeptide substrates with C-terminal Leu, Glu, and Arg from 64/1.7/1 to 162/1.3/1. Substitution of the hydrophobic Leu254 in CPT for polar Asn did not change hydrolysis efficiency of substrates with C-terminal Leu and Arg, but resulted in more than 28-fold decrease in activity towards the substrate with C-terminal Glu. It is shown that the His68 residue is not a structural determinant of CPT specificity.  相似文献   

6.
The Gin residue at amino acid position 102 ofBacillus stearothermophilus lactate dehydrogenase was replaced with Ser, Thr, Tyr, or Phe to investigate the effect on substrate recognition. The Q102S and Q102T mutant enzymes were found to have a broader range of substrate specificity (measured byk cat/K m) than the wild-type enzyme. However, it is evident that either Ser or Thr at position 102 are of a size able to accommodate a wide variety of substrates in the active site and substrate specificity appears to rely largely on size discrimination in these mutants. The Q102F and Q102Y mutant enzymes have low catalytic efficiency and do not show this relaxed substrate specificity. However, their activities are restored by the presence of an aromatic substrate. All of the enzymes have a very low catalytic efficiency with branched chain aliphatic substrates.Abbreviations used BSLDH Bacillus stearothermophilus lactate dehydrogenase - FBP fructose-1,6-bisphosphate - HP hydroxypyruvate - KB ketobutyrate - KC ketocaproate - KV ketovalerate - MDH malate dehydrogenase - PP phenylpyruvate - PYR pyruvate - RBE relative binding energy  相似文献   

7.
Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.  相似文献   

8.
The use of Escherichia coli asparaginase II as a drug for the treatment of acute lymphoblastic leukemia is complicated by the significant glutaminase side activity of the enzyme. To develop enzyme forms with reduced glutaminase activity, a number of variants with amino acid replacements in the vicinity of the substrate binding site were constructed and assayed for their kinetic and stability properties. We found that replacements of Asp248 affected glutamine turnover much more strongly than asparagine hydrolysis. In the wild-type enzyme, N248 modulates substrate binding to a neighboring subunit by hydrogen bonding to side chains that directly interact with the substrate. In variant N248A, the loss of transition state stabilization caused by the mutation was 15 kJ mol(-1) for L-glutamine compared to 4 kJ mol(-1) for L-aspartic beta-hydroxamate and 7 kJ mol(-1) for L-asparagine. Smaller differences were seen with other N248 variants. Modeling studies suggested that the selective reduction of glutaminase activity is the result of small conformational changes that affect active-site residues and catalytically relevant water molecules.  相似文献   

9.
A new approach in altering the substrate specificity of enzyme is proposed using glucose dehydrogenase, with pyrroroquinoine quinone (PQQGDH) as co-factor, as the model. This approach is based on the selection of random peptide phage displayed library. Using an M13 phage-display random peptide library, we have selected peptide ligands. Among the peptide ligands, a 7-mer peptide, composed of Thr-Thr-Ala-Thr-Glu-Tyr-Ser, caused PQQGDH substrate specificity to decrease significantly toward disaccharides, such as maltose and lactose, while a smaller effect was observed toward glucose. Consequently, this peptide narrowed the substrate specificity of PQQGDH, without a significant loss of the enzyme activity.  相似文献   

10.
Structural basis of substrate specificity in the serine proteases.   总被引:21,自引:12,他引:21       下载免费PDF全文
Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.  相似文献   

11.
Recently, the three-dimensional structure of chicory (Cichorium intybus) fructan 1-exohydrolase (1-FEH IIa) in complex with its preferential substrate, 1-kestose, was determined. Unfortunately, no such data could be generated with high degree of polymerization (DP) inulin, despite several soaking and cocrystallization attempts. Here, site-directed mutagenesis data are presented, supporting the presence of an inulin-binding cleft between the N- and C-terminal domains of 1-FEH IIa. In general, enzymes that are unable to degrade high DP inulins contain an N-glycosylation site probably blocking the cleft. By contrast, inulin-degrading enzymes have an open cleft configuration. An 1-FEH IIa P294N mutant, introducing an N-glycosylation site near the cleft, showed highly decreased activity against higher DP inulin. The introduction of a glycosyl chain most probably blocks the cleft and prevents inulin binding and degradation. Besides cell wall invertases, fructan 6-exohydrolases (6-FEHs) also contain a glycosyl chain most probably blocking the cleft. Removal of this glycosyl chain by site-directed mutagenesis in Arabidopsis thaliana cell wall invertase 1 and Beta vulgaris 6-FEH resulted in a strong decrease of enzymatic activities of the mutant proteins. By analogy, glycosylation of 1-FEH IIa affected overall enzyme activity. These data strongly suggest that the presence or absence of a glycosyl chain in the cleft is important for the enzyme's stability and optimal conformation.  相似文献   

12.
NAD-dependent Lactobacillus bulgaricus D-Lactate dehydrogenase (D-LDHb) catalyses the reversible conversion of pyruvate into D-lactate. Crystals of D-LDHb complexed with NADH were grown and X-ray data collected to 2.2 A. The structure of D-LDHb was solved by molecular replacement using the dimeric Lactobacillus helveticus D-LDH as a model and was refined to an R-factor of 20.7%. The two subunits of the enzyme display strong asymmetry due to different crystal environments. The opening angles of the two catalytic domains with respect to the core coenzyme binding domains differ by 16 degrees. Subunit A is in an "open" conformation typical for a dehydrogenase apo enzyme and subunit B is "closed". The NADH-binding site in subunit A is only 30% occupied, while in subunit B it is fully occupied and there is a sulphate ion in the substrate-binding pocket. A pyruvate molecule has been modelled in the active site and its orientation is in agreement with existing kinetic and structural data. On domain closure, a cluster of hydrophobic residues packs tightly around the methyl group of the modelled pyruvate molecule. At least three residues from this cluster govern the substrate specificity. Substrate binding itself contributes to the stabilisation of domain closure and activation of the enzyme. In pyruvate reduction, D-LDH can adapt another protonated residue, a lysine residue, to accomplish the role of the acid catalyst His296. Required lowering of the lysine pK(a) value is explained on the basis of the H296K mutant structure.  相似文献   

13.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

14.
NAD + -dependent glyceraldehyde dehydrogenases usually had lower activity in the nonphosphorylated Entner–Doudoroff (nED) pathway. In the present study, a new NAD + -dependent glyceraldehyde dehydrogenase was engineered from l-lactaldehyde dehydrogenase of E. coli (EC: 1.2.1.22). Through comparison of the sequence alignment and the active center model, we found that a residue N286 of l-lactaldehyde dehydrogenase contributed an important structure role to substrate identification. By free energy calculation, three mutations (N286E, N286H, N286T) were chosen to investigate the change of substrate specificity of the enzyme. All mutants were able to oxidate glyceraldehyde. Especially, N286T showed the highest activity of 1.1U/mg, which was 5-fold higher than the reported NAD + -dependent glyceraldehyde dehydrogenases, and 70% activity was retained at 55?°C after an hour. Compared to l-lactaldehyde, N286T had a one-third lower Km value to glyceraldehyde.  相似文献   

15.
Within the superfamily of homologous mammalian ribonucleases (RNases) 4 distinct families can be recognized. Previously, representative members of three of these have been cloned and studied in detail. Here we report on the cloning of a cDNA encoding a member of the fourth family, RNase PL3 from porcine liver. The deduced amino acid sequence showed the presence of a signal peptide, confirming the notion that RNase PL3 is a secreted RNase. Expression of the cDNA in Escherichia coli yielded 1.5 mg of purified protein/liter of culture. The recombinant enzyme was indistinguishable from the enzyme isolated from porcine liver based on the following criteria: amino acid analysis, N-terminal amino acid sequence, molecular weight, specific activity toward yeast RNA, and kinetic parameters for the hydrolysis of uridylyl(3',5')adenosine and cytidylyl(3',5')adenosine. Interestingly, the kinetic data showed that RNase PL3 has a very low activity toward yeast RNA, i.e., 2.5% compared to pancreatic RNase A. Moreover, using the dinucleotide substrates and homopolymers it was found that RNase PL3, in contrast to most members of the RNase superfamily, strongly prefers uridine over cytidine on the 5' side of the scissile bond. Replacement, by site-directed mutagenesis, of residues 36-42 of RNase PL3 by the corresponding ones from bovine pancreatic RNase A resulted in a large preferential increase in the catalytic efficiency for cytidine-containing substrates. This suggests that this region of the molecule contains some of the elements that determine substrate specificity.  相似文献   

16.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

17.
A biased mutation-assembling method—that is, a directed evolution strategy to facilitate an optimal accumulation of multiple mutations on the basis of additivity principles, was applied to the directed evolution of water-soluble PQQ glucose dehydrogenase (PQQGDH-B) to reduce its maltose oxidation activity, which can lead to errors in blood glucose determination. Mutations appropriate for the reduction without fatal deterioration of its glucose oxidation activity were developed by an error-prone PCR method coupled with a saturation mutagenesis method. Moreover, two types of incorporation frequency based on their contribution were assigned to the mutations: high (80%) and evens (50%), in constructing a multiple mutant library. The best mutant created showed a marked reduction in maltose oxidation activity, corresponding to 4% of that of the wild-type enzyme, with 35% retention of glucose oxidation activity. In addition, this mutant showed a reduction in galactose oxidation activity corresponding to 5% of that of the wild-type enzyme. In conclusion, we succeeded in developing the PQQGDH-B mutants with improved substrate specificity and validated our method coupled with optimized mutations and their contribution-based incorporation frequencies by applying it to the development.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
A gene encoding valine dehydrogenase (Vdh) has been cloned from Streptomyces albus, a salinomycin producer, and expressed in Escherichia coli. The S. albus Vdh is composed of 364 amino acids that showed high homology with several other amino acid dehydrogenases as well as Vdhs from Streptomyces spp. and leucine and phenylalanine dehydrogenases (Ldh and Pdh) from Bacillus spp. A protein of 38 kDa, corresponding to the approximate mass of the predicted S. albus Vdh product (38.4 kDa) exhibiting specific Vdh activity, was observed when the S. albus vdh gene was overexpressed in E. coli under the controlled T7 promoter and was subsequently purified to homogeneity. Among branched- and straight-chain amino acids, L-valine and L-alpha-aminobutyrate were the preferred substrates for the enzyme. Lys-79 and Lys-91 of S. albus Vdh were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydrogenase sequences. To elucidate the functional roles of the lysyl residues, the Lys residues have individually been replaced with Ala by site-directed mutagenesis. Kinetic analyses of the Lys-79 and Lys-91-mutated enzymes revealed that they are involved in the substrate binding site and catalysis, respectively, analogous to the corresponding residues in the homologous Ldh and Pdh.  相似文献   

19.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

20.
Aminopeptidases can selectively catalyze the cleavage of the N-terminal amino acid residues from peptides and proteins. Bacillus subtilis aminopeptidase (BSAP) is most active toward p-nitroanilides (pNAs) derivatives of Leu, Arg, and Lys. The BSAP with broad substrate specificity is expected to improve its application. Based on an analysis of the predicted structure of BSAP, four residues (Leu 370, Asn 385, Ile 387, and Val 396) located in the substrate binding region were selected for saturation mutagenesis. The hydrolytic activity toward different aminoacyl-pNAs of each mutant BSAP in the culture supernatant was measured. Although the mutations resulted in a decrease of hydrolytic activity toward Leu-pNA, N385L BSAP exhibited higher hydrolytic activities toward Lys-pNA (2.2-fold) and Ile-pNA (9.1-fold) than wild-type BSAP. Three mutant enzymes (I387A, I387C and I387S BSAPs) specially hydrolyzed Phe-pNA, which was undetectable in wild-type BSAP. Among these mutant BSAPs, N385L and I387A BSAPs were selected for further characterized and used for protein hydrolysis application. Both of N385L and I387A BSAPs showed higher hydrolysis efficiency than the wild-type BASP and a combination of the wild-type and N385L and I387A BSAPs exhibited the highest hydrolysis efficiency for protein hydrolysis. This study will greatly facilitate studies aimed on change the substrate specificity and our results obtained here should be useful for BSAP application in food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号