首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate and boreal forests are forecast to change in composition and shift spatially in response to climate change. Local‐scale expansions and contractions are most likely observable near species range limits, and as trees are long‐lived, initial shifts are likely to be detected in the understory regeneration layers. We examined understory relative abundance patterns of naturally regenerated temperate and boreal tree species in two size classes, seedlings and saplings, and across two spatial scales, local stand‐scale ecotones (tens of meters) and the regional temperate–boreal transition zone (?250 km) in central North America, to explore indications of climate‐mediated shifts in regeneration performance. We also tested for the presence of strong environmental gradients across local ecotones that might inhibit species expansion. Results showed that tree regeneration patterns across ecotones varied by species and size class, and varied across the regional summer temperature gradient. Temperate tree species regeneration has established across local ecotones into boreal forest patches and this process was facilitated by warmer temperatures. Conversely, boreal conifer regeneration exhibited negative responses to the regional temperature gradient and only displayed high abundance at the boreal end of local ecotones at cool northern sites. The filtering effects of temperature also increased with individual size for both boreal and temperate understory stems. Observed regeneration patterns and the minor environmental gradients measured across local ecotones failed to support the idea that there were strong barriers to potential temperate tree expansion into boreal forest patches. Detectable responses, consistently in the directions predicted for both temperate and boreal species, indicate that summer temperature is likely an important driver of natural tree regeneration in forests across the temperate–boreal transition zone. Regeneration patterns point toward temperate expansion and reduced but continued boreal presence in the near‐future, resulting in local and regional expansions of mixed temperate‐boreal forests.  相似文献   

2.
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.  相似文献   

3.
Projected temperature increases under global warming could benefit southern tree species by providing them the optimal growing temperature and could be detrimental to northern species by exposing them to the supra optimal growing temperatures. This benefit-detriment trade-off could increase the competitive advantage of southern species in the northern species range and cause the increase or even dominance of southern species in the northern domain. However, the optimum temperature for photosynthesis of C3 plants may increase due to CO2 enrichment. An increase in the optimum temperature could greatly reduce the benefit-detriment effect. In this study, we coupled a forest ecosystem process model (PnET-II) and a forest GAP model (LINKAGES) with a spatially dynamic forest landscape model (LANDIS-II) to study how an optimum temperature increase could affect forest landscape response due to global warming. We simulated 360 years of forest landscape change in the Boundary Water Canoe Area (BWCA) in northern Minnesota, which is transitional between boreal and temperate forest. Our results showed that, under the control scenario of continuing the historic 1984–1993 mean climate (mainly temperature, precipitation and CO2), the BWCA will become a spruce-fir dominated boreal forest. However, under the scenario of predicted climatic change [the 2000–2099 climates are predicted by Canadian Climate Center (CCC), followed by 200 years of continuing the predicted 2090–2099 mean climate], the BWCA will become a pine-dominated mixed forest. If the optimum temperature increases gradually with [CO2] (the increase in optimum temperature is assumed to change gradually from 0 °C in year 2000 to 5 °C in year 2099 when [CO2] reaches 711 ppm and stabilizes at 5 °C after year 2099), the BWCA would remain a fir-dominated boreal forest in areas with relatively high water-holding capacity, but not in areas with relatively low water-holding capacity. Our results suggest that the [CO2] induced increases in optimum temperature could substantially reduce forest landscape change caused by global warming. However, not all tree species would be able to successfully adapt to future warming as predicted by CCC, regardless of optimum temperature acclimations.  相似文献   

4.
Patterns of formation of island butterfly fauna at the northern forest boundary in the region of Valdai inland ice were analyzed by the example of White Sea islands. The ecotone effect, typical for northernmost taiga and forest-tundra and introducing the transitional butterfly fauna in near-tundra forest between the boreal and hypoarctic zones, was not observed on the White Sea islands. Island isolation provided for the absence of some Arctic species, entering near-tundra forest from the North, in the island fauna. Island butterfly faunas represent poor variants of the northern taiga fauna lacking some polyzonal and temperate species and having a reduced set of Arctic boreal species.  相似文献   

5.
Ahistorical drivers such as nonnative invasive earthworms and high deer densities can have substantial impacts on ecosystem processes and plant community composition in temperate and boreal forests of North America. To assess the roles of earthworm disturbance, deer, and environmental factors in the understory, we sampled 125 mixed temperate-boreal forest sites across the western Great Lakes region. We utilized structural equation modeling (SEM) to address the hypothesis that earthworm disturbance to the upper soil horizons and selective herbivory by deer are associated with depauperate understory plant communities dominated by graminoid and nonnative species. Evidence of earthworm activity was found at 93 % of our sites and 49 % had high to very high severity earthworm disturbance. The SEM fit the data well and indicated that widespread nonnative earthworm disturbance and high deer densities had similar magnitudes of impact on understory plant communities and that these impacts were partially mediated by environmental characteristics. One-third of the variation in earthworm disturbance was explained by soil pH, precipitation, and litter quality. Deer density and earthworm disturbance both increased graminoid cover while environmental variables showed direct and indirect relationships. For example, the positive relationship between temperature and graminoids was indirect through a positive temperature effect on deer density. This research characterizes an integrated set of key environmental variables driving earthworm disturbance and deer impacts on the forest understory, facilitating predictions of the locations and severity of future change in northern temperate and boreal forest ecosystems.  相似文献   

6.
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.  相似文献   

7.
Patterns of mycorrhizal infection, seasonal foliar nutrient concentrations, nutrient allocation to shoots and rhizomes, and nutrient resorption were measured in relation to soil nutrient availability in two species of perennial forest herbs, Geranium maculatum L. and Polygonatum pubescens Pursh., in four forest stands in southern and central Ohio. The percentage of plants with V-A mycorrhizae and the proportion of root length colonized by VAM structures increased with decreasing nutrient availability in both species. Foliar N and P concentrations in plants from lower fertility sites were as high, or higher, than those in plants from higher fertility sites; as a result, tissue nutrient enrichment ratios (foliar concentration/soil available concentration) increased with decreasing fertility. Proportional resorption of N and P generally decreased with decreasing nutrient availability, a pattern inconsistent with those exhibited by woody plants in these forest stands. We hypothesize that the inverse relationship between nutrient uptake efficiency (via mycorrhizae) and nutrient use efficiency (resorption) exhibited by these forest understory herbs, but not by trees or herbs from high-light environments, may be related to low-light limitation of energy reserves in the forest understory.  相似文献   

8.
A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.  相似文献   

9.
Parasitoid wasp communities of the canopy of temperate forests are still largely unexplored. Very little is known about the community composition of parasitoids between canopy and understory and how much of this difference is related to forest structure or parasitoid biological strategies. In this study we investigated upon the difference in the community composition of the parasitic wasps Ichneumonidae between canopy and understory in a lowland temperate forest in northern Italy. We used general linear models to test whether parasitic strategy modifies species vertical stratification and the effect of forest structure. We also tested differences in β‐diversity between canopy and understory traps and over time within single forest layers. We found that stand basal area was positively related to species richness, suggesting that the presence of mature trees can influence local wasp diversity, providing a higher number of microhabitats and hosts. The ichneumonid community of the canopy was different from that of the understory, and the β‐diversity analysis showed higher values for the canopy, due to a higher degree of species turnover between traps. In our analyses, the vertical stratification was different between groups of ichneumonids sharing different parasitic strategies. Idiobiont parasitoids of weakly or deeply concealed hosts were more diverse in the understory than in the canopy while parasitoids of spiders were equally distributed between the two layers. Even though the ichneumonid community was not particularly species‐rich in the canopy of the temperate forests, the extension of sampling to that habitat significantly increased the number of species recorded.  相似文献   

10.
In recent decades, severe droughts have become an important cause of canopy disturbance in forests, and have shown potential to cause rapid and pronounced vegetation shifts. Under dead canopy, undamaged understory could influence the nature of resource limitation for seedling growth and survival, limiting forest regeneration. We assessed the release response of understory vegetation after a severe drought event in temperate forests of northern Patagonia. Growth trends of dominant tree saplings, and changes in vegetation biodiversity and cover were compared between drought-dead and unaffected canopy. Nothofagus dombeyi undergo growth release after the climatic event in affected forests, and the response was evidenced immediately after the disturbance. For Austrocedrus chilensis, the growth release response was less evident, due mainly to a difference in age structure. In the understory the release response was barely discernable for some components. There was a tendency towards higher cover of the shrub layer in the understory of drought-affected forests, and an important presence of the exotic shrub Rosa rubiginosa. However, the clearest biotic response following drought mortality was the release in growth of understory dominant tree component. Those results strongly suggest that the environment under drought-dead canopy, and the die-off in woody sapling cohorts in a self-thinning process, could favor crown expansion and growth release of understory species that could help predict future forest trajectories in the context of the influence of climatic extreme events.  相似文献   

11.
Conifer regeneration failure in the presence of dense ericaceous cover resulting from the removal of canopy trees by forest harvesting observed in boreal and temperate forest has been attributed to allelopathy, competition, and soil nutrient imbalance. Ecosystem-level alleopathic effect has been argued as a cause for conifer regeneration failure by citing examples from a species-poor boreal forest in northern Sweden with ground vegetation dominated by crowberry (Empetrum hermaphroditum, Ericales) and New Zealand dairy pastures invaded by nodding or musk thistle (Carduus nutans). This article aims to explain the phenomenon of vegetation shift from conifer forest to ericaceous heath by extending the argument of ecosystem-level impact of ericaceous plants and linking the disturbance-mediated regeneration strategies of the dominant conifer species and the understory ericaceous species with the quality of seedbed substrate that influence the direction of secondary succession. It has been argued that fire severity plays a pivotal role in controlling seedbed quality and the regeneration mechanisms of conifers, which in turn determines the direction of post-disturbance succession. The post-fire-dominated ericaceous plants and their habitat-modifying effects have been explained from the point of view of keystone species concept and their role as ecosystem engineers. In the absence of high severity natural fires the canopy keystone species (conifer) fails to regenerate successfully mainly due to limitation of favorable seedbed. On the other hand, the understory ericaceous plants regenerate vigorously by vegetative methods from the belowground components that survived the fire. Forest harvesting by clearcutting or selective cutting also create similar vigorous vegetative regrowth of ericaceous plants, but conifer regeneration suffers from the lack of a suitable seedbed. Thus in the absence of successful conifer regeneration, the vigorously growing understory ericaceous plants become the new keystone species. The new keystone ericaceous species bring about a significant long-term habitat change by rapid accumulation of plyphenol-rich humus. Ericaceous phenolic compounds have been found to inhibit seed germination and seedling growth of conifers. By forming protein-phenol complexes they cause a further reduction of available nitrogen of the already nutrient-stressed habitat. A low pH condition in the presence of phenolic compounds causes the leaching of metallic ions and forms hard iron pans that impair soil water movement. The phenolic allelochemicals of ericaceous humus are also inhibitory to many conifer ectomycorrhizae. On the other hand, ericaceous plants perpetuate in the community by their stress-tolerating strategies as well as their ability to acquire nutrients through ericoid mycorrhizae. Three mechanisms working at the ecosystem level can be suggested as the cause of vegetation shift from forest to ericaceous heath. These are (1) the absence of high severity natural fire and the limitation of suitable conifer seedbed in the presence of thick humus, (2) increased competition resulting from the rapid vegetative regeneration of understory ericaceous plants after forest canopy opening by harvesting or nonsevere fire, and (3) habitat degradation by phenolic allelochemicals of ericaceous plants causing a soil nutrient imbalance and iron pan formation. Thus, a shift in keystone species from conifer to ericaceous plant in the post-disturbance habitat may induce a retrogressive succession due to ecosystem-level engineering effects of the new keystone species. Vegetation management in conifer-ericaceous communities depends on land management objectives. If the objective is to produce timber and other forest products then the control of ericaceous plants and site preparation is necessary after forest harvesting. Ploughing and liming followed by conifer planting and repeated N fertilization has been applied successfully to promote afforestation of Calluna heathlands in Britain. However, such practice has not been proven successful in the reforestation of Kalmia-dominated sites in eastern Canada. If, on the other hand, the land management objective is to maintain heathlands for herbivore production or conservation of cultural landscape, as in the case of certain Calluna-dominated heathland in Western Europe, then moderately hot prescribed burning is useful as a management tool.  相似文献   

12.
Question: Can augmented forest stand complexity increase understory vegetation richness and cover and accelerate the development of late‐successional features? Does within‐stand understory vegetation variability increase after imposing treatments that increase stand structural complexity of the overstory? What is the relative contribution of individual stand structural components (i.e. forest matrix, gaps, and leave island reserves) to changes in understory vegetation richness? Location: Seven study sites in the Coastal Range and Cascades regions of Oregon, USA. Methods: We examined the effects of thinning six years after harvest on understory plant vascular richness and cover in 40‐ to 60‐year‐old forest stands dominated by Douglas‐fir (Pseudotsuga menziesii). At each site, one unthinned control was preserved and three thinning treatments were implemented: low complexity (LC, 300 trees ha?1), moderate complexity (MC, 200 trees ha?1), and high complexity (HC, variable densities from 100 to 300 trees ha?1). Gaps openings and leave island reserves were established in MC and HC. Results: Richness of all herbs, forest herbs, early seral herbs and shrubs, and introduced species increased in all thinning treatments, although early seral herbs and introduced species remained a small component. Only cover of early seral herbs and shrubs increased in all thinning treatments whereas forest shrub cover increased in MC and HC. In the understory, we found 284 vascular plant species. After accounting for site‐level differences, the richness of understory communities in thinned stands differed from those in control stands. Within‐treatment variability of herb and shrub richness was reduced by thinning. Matrix areas and gap openings in thinned treatments appeared to contribute to the recruitment of early seral herbs and shrubs. Conclusions: Understory vegetation richness increased 6 years after imposing treatments, with increasing stand complexity mainly because of the recruitment of early seral and forest herbs, and both low and tall shrubs. Changes in stand density did not likely lead to competitive species exclusion. The abundance of potentially invasive introduced species was much lower compared to other plant groups. Post‐thinning reductions in within‐treatment variability was caused by greater abundance of early seral herbs and shrubs in thinned stands compared with the control. Gaps and low‐density forest matrix areas created as part of spatially variably thinning had greater overall species richness. Increased overstory variability encouraged development of multiple layers of understory vegetation.  相似文献   

13.
Carex species are dominant and abundant plants in boreal and arctic landscapes, typically covering large wetland areas. Most of these vegetation-characteristic species are from Carex sections Phacocystis and Vesicariae, frequently growing together, but also forming monodominant stands. Here we study these species in a phylogenetic framework to infer whether this co-occurrence pattern results from convergent evolution. In both sections, we observed a Northern clade consisting only of arctic to boreal species, a Mixed clade of northern and more southerly distributed species and a Southern grade of species mainly from temperate or further southern zones. The species of the Northern clades of both sections that are the focus of the study may be of similar young age and are rather equally diversified in terms of molecular divergence and morphology, suggesting a replicate adaptive radiation in boreal to arctic habitats. Morphological characters possibly linked with functional importance are not significantly different between the respective clades of the two sections, whereas reproductive structures may be phylogenetically constrained. The evolution of salt tolerance and ongoing diversification in the Northern clade of sect. Phacocystis suggests that the observed replicate adaptive radiation might be a transitional state in the diversification of species and may explain why such radiations are so rarely documented.  相似文献   

14.
Reports of forest sensitivity to climate change are based largely on the study of overstory trees, which contribute significantly to forest growth and wood supply. However, juveniles in the understory are also critical to predict future forest dynamics and demographics, but their sensitivity to climate remains less known. In this study, we applied boosted regression tree analysis to compare the sensitivity of understory and overstory trees for the 10 most common tree species in eastern North America using growth information from an unprecedented network of nearly 1.5 million tree records from 20,174 widely distributed, permanent sample plots across Canada and the United States. Fitted models were then used to project the near-term (2041–2070) growth for each canopy and tree species. We observed an overall positive effect of warming on tree growth for both canopies and most species, leading to an average of 7.8%–12.2% projected growth gains with climate change under RCP 4.5 and 8.5. The magnitude of these gains peaked in colder, northern areas for both canopies, while growth declines are projected for overstory trees in warmer, southern regions. Relative to overstory trees, understory tree growth was less positively affected by warming in northern regions, while displaying more positive responses in southern areas, likely driven by the buffering effect of the canopy from warming and climate extremes. Observed differences in climatic sensitivity between canopy positions underscore the importance of accounting for differential growth responses to climate between forest strata in future studies to improve ecological forecasts. Furthermore, latitudinal variation in the differential sensitivity of forest strata to climate reported here may help refine our comprehension of species range shift and changes in suitable habitat under climate change.  相似文献   

15.
Aim In addition to the traditionally recognized Last Glacial Maximum (LGM, 21 ka) refuge areas in the Mediterranean region, more northerly LGM distributions for temperate and boreal taxa in central and eastern Europe are increasingly being discussed based on palaeoecological and phylogeographical evidence. Our aim was to investigate the potential refuge locations using species distribution modelling to estimate the geographical distribution of suitable climatic conditions for selected rodent species during the LGM. Location Eurasia. Methods Presence/absence data for seven rodent species with range limits corresponding to the limits of temperate or boreal forest or arctic tundra were used in the analysis. We developed predictive distribution models based on the species present‐day European distributions and validated these against their present‐day Siberian ranges. The models with the best predictors of the species distributions across Siberia were projected onto LGM climate simulations to assess the distribution of climatically suitable areas. Results The best distribution models provided good predictions of the present‐day Siberian ranges of the study species. Their LGM projections showed that areas with a suitable LGM climate for the three temperate species (Apodemus flavicollis, Apodemus sylvaticus and Microtus arvalis) were largely restricted to the traditionally recognized southern refuge areas, i.e. mainly in the Mediterranean region, but also southernmost France and southern parts of the Russian Plain. In contrast, suitable climatic conditions for the two boreal species (Clethrionomys glareous and Microtus agrestis) were predicted as far north as southern England and across southern parts of central and eastern Europe eastwards into the Russian Plain. For the two arctic species (Lemmus lemmus and Microtus oeconomus), suitable climate was predicted from the Atlantic coast eastward across central Europe and into Russia. Main conclusions Our results support the idea of more northerly refuge areas in Europe, indicating that boreal species would have found suitable living conditions over much of southern central and eastern Europe and the Russian Plain. Temperate species would have primarily found suitable conditions in the traditional southern refuge areas, but interestingly also in much of the southern Russian Plain.  相似文献   

16.
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.  相似文献   

17.
Changes in soil carbon, the largest terrestrial carbon pool, are critical for the global carbon cycle, atmospheric CO2 levels and climate. Climate warming is predicted to be most pronounced in the northern regions and therefore the large soil carbon pool residing in boreal forests will be subject to larger global warming impact than soil carbon pools in the temperate or the tropical forest. A major uncertainty in current estimates of the terrestrial carbon balance is related to decomposition of soil organic matter (SOM). We hypothesized that when soils are exposed to warmer climate the structure of the ground vegetation will change much more rapidly than the dominant tree species. This change will alter the quality and amount of litter input to the soil and induce changes in microbial communities, thus possibly altering the temperature sensitivity of SOM decomposition. We transferred organic surface soil sections from the northern borders of the boreal forest zone to corresponding forest sites in the southern borders of the boreal forest zone and studied the effects of warmer climate after an adaptation period of 2 years. The results showed that initially ground vegetation and soil microbial community structure and community functions were different in northern and southern forest sites and that 2 years of exposure to warmer climate was long enough to cause changes in these ecological indicators. The rate of SOM decomposition was approximately equally sensitive to temperature irrespective of changes in vegetation or microbial communities in the studied forest sites. However, as temperature sensitivity of the decomposition increases with decreasing temperature regime, the proportional increase in the decomposition rate in northern latitudes could lead to significant carbon losses from the soils.  相似文献   

18.
《Flora》2005,200(4):376-397
World distribution of 488 out of 619 vascular plant species known from an area of 500 km2 within the western Khentey Mountains, northern Mongolia is analyzed. Most species belong to Eastern Asian (29%) or Asian, Eurasian, or circumpolar temperate species (24%) supporting the classification of the Khentey Mountains as part of the temperate zone of Eurasia. Seventeen percent of species are boreal plants. Circumpolar temperate-boreal (9%), Central (-Eastern) Asian (9%), Continental mountain species (5%), Middle-Central Asian (3%), arctic-alpine (3%) as well as Western Eurasian and western Siberian species are of lower significance for the flora of the western Khentey Mountains. Eastern Asian species occur in all types of habitats, whereas plants of other distribution types are focused on certain habitats. Boreal species preferably grow in the dark taiga, which prevails in the upper montane belt and on northern and eastern slopes of the most humid parts of the lower montane belt. Temperate and temperate-boreal species prefer subtaiga forests, which are found on northern and eastern slopes in drier parts of the lower montane belt as well as in upper parts of sun-exposed, southern and western slopes of the lower montane belt. Central (-Eastern) Asian and Middle-Central Asian species primarily inhabit forest steppe habitats, such as meadow and mountain steppes, Ulmus pumila open woodlands and dry Pinus sylvestris forests on steep, southern slopes.  相似文献   

19.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

20.
Bioclimatic hypotheses are used to explain how climate regulates the occurrence of species. A derivative of these hypotheses is that plants moved between corresponding bioclimatic areas should thrive, whereas plants moved to a different zone should languish. This principle is routinely applied in forestry and horticulture but actual tests of the hypotheses seem scanty. We carried out a test on the Finnish system of bioclimatic vegetation zoning using the plant collection of Helsinki University Botanic Garden in Kumpula, which is situated at the northern limit of the hemiboreal zone. We aimed to test how the plants’ survival depends on their provenance with the expectation that plants from the hemiboreal or southern boreal zones should do best in Kumpula. Probability of survival was estimated using collection database information of 379 plant accessions of known wild origin, and logit models. Different growth forms were analysed separately. In most analyses accessions of temperate and hemiarctic origin showed lower survival probability than those originating from any of the boreal subzones, which among them exhibited rather evenly high probabilities. Trees were an exception showing an almost steadily increasing survival probability from temperate to northern boreal origin. In all, the results gave some support to the tested hypothesis, but the various factors that could not be controlled for produced results that were difficult to interpret. We conclude that botanic gardens should pay due attention to information management and curational practices to ensure widest possible applicability of their plant collections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号