首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of GA10 is thought to be under photoperiodic control in the woody plant Salix pentandra . However, in a recent study using 16,17-[3H2]GA19 as a mimic of Ga10, no effect of photoperiod was found on its metabolism to 16,17-dihydro-GA20 and 16,17-dihydro-GA1. To investigate if this was due to differential action of exogenous 16,17-dihydro-GAs and GAs, the effects of the 16,17-dihydro-derivatives of the gibberellins GA19, GA1, and GA1 as compared with their parent GAs, on shoot elongation in seedlings of S. pentandra were studied. 16,17-Dihydro-GA19, and -GA20 were both almost inactive, while 16,17-dihydro-GA1 induced some shoot elongation in seedlings treated with ancymidol as well as under short days. GA19, GA20 and GA1 were all able to counteract the inhibitory effect of ancymidol under continuous light, while inhibition induced by a 12-h photoperiod was antagonised only by GA20 and GA1. Thus, the growth-stimulating activity of the tested GAs is significantly reduced by 16,17-dihydro derivatisation, but the derivatives do not inhibit stem elongation in S, pentandra , as has been found in monocotyledons.  相似文献   

2.
Gibberellins and photoperiodic control of shoot elongation in Salix   总被引:1,自引:0,他引:1  
Effects of exogenous gibberellins GA53, GA44, GA19, GA20 and GA1 on photoperiodically controlled shoot elongation in seedlings of Salix pentandra L. were studied. Gibberellins GA20 and GA1 induced shoot elongation under short days (SD) and could substitute for a transfer to long day (LD), while gibberellins A53, A44 and A19 were inactive. In seedlings exposed to a prolonged SD-treatment (30 days) there was a significant positive interaction between a transfer to LD and a treatment with GA20 and GA1 on shoot elongation. In addition, GA19 enhanced the growth promotive effect of LD in these seedlings. The results are compatible with the suggestion that conversion of GA19 to GA20 is blocked under SD. This effect is supposed to be an early process leading to the cessation of shoot elongation under SD. Responsiveness of the seedlings to LD and to a GA-treatment gradually decreased with an increasing length of exposure to SD.  相似文献   

3.
Effects of gibberellins A1, A4/7, A9, A19 and A20 and growth retardants were studied on shoot elongation in seedlings of Salix pentandra L. The growth-retarding effects of CCC and ancymidol were antagonized by all the gibberellins tested. The novel plant growth regulator prohexadione (free acid of BX-112), which is suggested to block 3β-hydroxylation of gibberellins, effectively prevented shoot elongation in seedlings grown under long photoperiod. Initiation of new leaves was only slightly reduced. GA1, but not GA19 and GA20, was active in overcoming the inhibition of stem elongation of seedlings, treated with prohexadione, GA19, GA20 and GA1 are native in S. pentandra , and the results are compatible with the hypothesis that GA1 is active per se in shoot elongation, and that the effect of GA19 and GA20 is dependent on their conversion to GA1.
A mixture of GA4 and GA7 was as active as GA1 in promoting shoot elongation in seedlings treated with prohexadione, while GA9 showed slight activity only when applied at high doses.  相似文献   

4.
In the temperate-zone woody species Salix pentandra elongation growth is regulated by the photoperiod. Long days sustain active growth, whereas short days induce cessation of apical growth, which is a prerequisite for winter hardening. It is shown that this is correlated to quantitative changes in levels of endogenous GA19 GA20, and GA1. Within two short days the amount of the active GA1 and its immediate precursor GA20, decreased markedly in young leaves us well as in stem tissue. Also, the amount of GA19, declined, but the decrease was delayed relative to that of GA1 and GA20. The ability of S. pentandra seedlings to respond to exogenous GA19, decreased with increasing numbers of short days. Observations that support the hypothesis that the level of GA1 in S. pentandra is regulated by the photoperiod in a quantitative mode with conversion of GA19, to GA20, being one target for control.
Different distribution of GAs in various plant parts was observed. The level of GA was higher in young leaves than in other plant parts, and the amount of GA19 was 5–10 times higher in stem tissue than in leaves and roots. The ratios of GA8 to GA1 and GA20, were higher in roots as compared with other parts, as rods contained very low levels of GA1 and GA20, but amounts of GA20 comparable with other parts.  相似文献   

5.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   

6.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

7.
Gibberellins GA1, GA8. GA19. GA29. GA20 and GA56 (2-epi-GA8). were identified by combined gas chromatography-mass spectrometry in root extracts of elongating Salix pentandra L. seedlings. The presence of GA8 was also demonstrated for the first time in S. pentandra shoots. The levels of GA1, GA8, GA19, GA20 in shoot tissue and in roots were estimated by selected ion monitoring. While the amounts of GA8 and GA19 were similar in both plant parts. the levels of the biologically active GA1 and its immediate precursor GA20. were found to be much lower in roots than in shoots.  相似文献   

8.
9.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

10.
The physiological response of cowpea ( Vigna sinensis L.) epicotyl explants to far‐red light (FR) and its interaction with gibberellins (GAs) have been investigated. The effect of FR and GA1 varied with the age of the seedlings from which the explants were made: for FR, it decreased progressively with age (though the sensitivity of the epicotyls to FR did not change significantly until at least day 11), whereas it remained essentially constant for applied GA1 between days 5 and 9 after sowing. This indicates that the loss of response to FR may be due to a decrease in endogenous GA levels in the epicotyl. For a range of GA1 and GA20 (0.01–1 µg explant−1), both hormones were more active in FR than in R irradiated epicotyls, suggesting that phytochrome may affect GA sensitivity besides GA metabolism. The location of the epicotyl region most sensitive to FR (between 5 and 20 mm below the apex) was different from that to GAs (the upper 10 mm). Nevertheless, FR extended the region responsive to applied GAs, even in paclobutrazol‐treated epicotyls where elongation was due entirely to exogenous GAs. This means that modulation of epicotyl elongation by phytochrome, that occurs in a zone different from though overlapping with the GA‐sensitive subapical zone, is also mediated by GAs. Growth in the most FR‐sensitive region of the epicotyl stimulated by FR or GA1 was due to cell elongation, and in the most GA‐sensitive region to both cell division and elongation. The effect of FR and GA1 was negated by colchicine, indicating that microtubules may be involved in the response to both factors.  相似文献   

11.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

12.
Fifteen different gibberellins (GA's) were tested for their ability to induce elongation growth under short day conditions in seedlings of Salix pentandra L. GA's were applied either to the apex or they were injected into a mature leaf. GA3 was highly active and also GA4+7 and GA4 showed high activity. GA1, GA2, GA5, GA9, GA13, GA20, GA36 and GA47 showed moderate activity. GA16, GA17, GA27 and GA41 exhibited low or no activity in doses up to 10 μg per plant. In general, a better growth response was obtained with an application to the apex than with an injection into the leaf.  相似文献   

13.
Endogenous gibberellins (GAs) in corms of Polianthes tuberosa L. (cv. Double) were isolated and identified by high performance liquid chromatography, bioassay and combined capillary gas chromatography-mass spectrometry (GC-MS). Gibberellins A1, A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower development stages. The identification of 13-hydroxylated GAs indicates the presence of the early 13-hydroxylation pathway in P. tuberosa corms. An increase in GA1 and GA20, and a decrease in GA19 levels, coincided with the transition from the vegetative phase to the stages of early floral initiation and flower development. GA53 stayed at constant levels at the 3 different growth stages. The absence of GA1 in vegetative corms and its presence in corms at early floral initiation and flower development stages suggest that GA1 is a causal factor in inducing floral initiation in P. tuberosa . When GA1, GA3, GA4, GA20 and GA32 were applied to corms at the vegetative stage (plants about 5 cm in height), floral initiation was promoted by all of the GAs used, GA32 being the most active. In contrast with the other GAs, GA32 had no effect on stem elongation. Therefore, it is suggested that hydroxylated C-19 GAs play an important role in flower induction in P. tuberosa .  相似文献   

14.
15.
The regulation by phytochrome of stem elongation in light-grown plants depends on gibberellins (GAs). To investigate whether this is mediated by a change in GA metabolism, the effect of the GA biosynthesis inhibitor LAB 198 999 (an acylcyclohexadione derivative) on the end-of-day far-red (FR) response in cowpea ( Vigna sinensis L.) epicotyl explants has been investigated. Growth of epicotyl explants of light-grown seedlings was enhanced when treated with far-red light before incubation in the dark (end-of-day FR effect). Low doses of LAB 198 999 (0.05 and 0.5 μg explant−1) reduced the effect of FR, whereas 5 to 50 μg explant−1 stimulated elongation of both red light (R)- and FR-treated epicotyl explants while nullifying the differences between R and FR treatments. In paclobutrazol-treated epicotyl explants, FR enhanced the response to applied GA1 and GA20, whereas LAB 198 999 increased the activity of GA1 and decreased that of GA20, [3H]Gibberellin A1, injected into the basal part of the epicotyl, was transported and metabolized mainly to [3H]GA8 in the apical 20 mm of the epicotyl. The conversion of [3H]GA1 to [3H]GA8 was dramatically reduced by both end-of-day FR treatments and LAB 198 999 applications. In addition, both treatments enhanced epicotyl elongation. It is proposed that the regulation of cowpea epicotyl growth by phytocrome is mediated, at least partially, by modifying GA1 degradation.  相似文献   

16.
Three-week-old shoots of the spring oilseed rape cv. Petranova ( Brassica napus L. ssp. napus ) were found by combined gas chromatography-mass spectrometry to contain GA1, GA8, GA15, GA17, GA19, GA20, GA24, GA29, 3-epi-GA1 and a previously uncharacterised C19 dicarboxylic acid that is probably structurally related to GA24. Shoots of the winter cultivar Belinda, harvested at the early flowering stage, contained the same GAs with the exception of the C19 dicarboxylic acid and, in addition, GA34 and GA51 were identified. All material contained higher levels of GA20 than of GA1; the ratio of GA1 to GA20 was highest in shoots containing the largest proportion of young immature tissues. Soil treatment of cv. Petranova seedlings with the growth retardant BAS 111¨W [1-phenoxy-5,5-dimethyl-3-(1,2,4-triazol-1-yl)-hexan-4-ol] caused 80% reduction in height 18 days after treatment and the levels of all GAs were 20% or less that of control plants. Foliar treatment at the same dosage reduced height by 50% and caused an 85% or greater reduction in the concentrations of the GA1 precursors GA20, GA19 and GA44. However, the levels of GA1, GA8 and GA29 were affected to a much smaller extent. Foliar application of BAS 111¨W to cv. Belinda 1 month after sowing resulted in only a 20% height reduction at flowering, but no uniform decrease in the concentrations of endogenous GAs at this stage.  相似文献   

17.
The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder ( Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA3. Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA1, GA3, GA4and GA20, in addition to the isomers 3- epi -GA1 and iso -GA3. Isotope dilution analysis indicated that epi -GA1 was an artefact. Likewise, iso -GA3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA1 was present in higher concentrations (130–150 ng ml−1) than GA3 (50–60 ng ml−1), GA4 (8–12 ng ml−1) and GA20 (2–3 ng ml−1). The data indicated that culture of both bacteria accumulate bioactive C19-gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.  相似文献   

18.
Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA ( CcGA20ox1 ) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3–4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.  相似文献   

19.
The Hong Mang Mai wheat cultivar is tolerant to deep-sowing conditions because it has an elongated first internode that is sensitive to gibberellin (GA3). The cells in the GA-treated first internodes were approximately 4.2 mm long, twice as long as the untreated Hong Mang Mai first internode cells. The elongation of the first internode of Hong Mang Mai, particularly when treated with GA3, was accompanied by remarkable spiral growth. In contrast, the first internodes of the GA-insensitive cultivar Norin 10 did not exhibit GA3-induced elongation or spiral growth. The walls of the first internode cells of GA3-treated Hong Mang Mai seedlings showed increased extensibility and higher (1→3), (1→4)- β - d -glucanase activity, autolysis and glucan contents than the cell walls of untreated Hong Mang Mai first internodes. The changes in the cell wall extensibility due to GA3 treatment correlated strongly with the GA3-induced changes in cell wall glucan content, autolysis, and glucanase activity. GA3-treated Hong Mang Mai seedlings showed elevated expression of Glucanase EI gene in the first internode compared to GA3-treated Norin 10. Thus, GA aids first internode elongation in Hong Mang Mai by enhancing glucan turnover and thus increasing cell wall loosening. The spiral growth of the first internode also helps the plant elongate against soil resistance, thereby promoting the deep-sowing tolerance of this cultivar.  相似文献   

20.
The involvement of gibberellins (GAs) in the regulation of floral stalk elongation and flower development has been studied in tulip. The biological activity of GA4 and GA9, both endogenous in tulip bulb sprouts, and GA1, was tested in vitro on sprouts of cooled and non-cooled tulip bulbs ( Tulipa gesneriana L. cv. Apeldoorn), in the presence or absence of the GA biosynthesis inhibitor paclobutrazol. At early starting dates of incubation, floral stalks from both cooled and non-cooled bulbs hardly showed any elongation in the absence of exogenous GA. Paclobutrazol had no effect on floral stalk elongation, and the response to GAs of sprouts from cooled bulbs was greater than that of sprouts from non-cooled bulbs. At later starts of incubation, considerable floral stalk elongation occurred without GA application. Paclobutrazol inhibited this floral stalk elongation, and the growth of sprouts from both cooled and non-cooled bulbs was stimulated by GA application. The effect of paclobutrazol was reversed by simultaneous application of GA4 or GA9. Application of GA with and without paclobutrazol resulted in the same elongation of the floral stalk, indicating the absence of substantial side effects of the inhibitor. The isolated sprouts did not develop a full-grown flower without the addition of GA. GA4 was more effective than GA9 in stimulating this flower development. The results demonstrate that both sprouts from cooled and non-cooled bulbs are responsive to exogenous GAs in vitro, and may be a site of GA biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号