首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of 12–36 min of global ischemia followed by 36 min of reperfusion in Langendorff perfused rabbit hearts (n = 26). Metabolism was determined in terms of peak and total release of purines (adenosine, inosine, hypoxanthine), lactate and noradrenaline during reperfusion; and myocardial content of nucleotides (ATP, ADP, AMP), glycogen and noradrenaline at the end of reperfusion. An inverse relationship (r = –0.79) existed between duration of ischemia and developed pressure post-ischemia. Early during reperfusion, after 12 min of ischemia, the purine concentration (peak release) increased 100x (p < 0.01), that of lactate and noradrenaline lOx (p < 0.05) . Total purine release rose with progression of the ischemic period (30x after 36 min of ischemia; p < 0.01), concomitant with a reduction in nucleotide content. Lactate release was independent from the duration of ischemia, although glycogen had declined by 30% (p < 0.01) after 36 min of ischemia. The acid insoluble glycogen fraction, which presumably contains proglycogen, increased substantially during short-term ischemia. Peak noradrenaline increased 100x and 200x (p < 0.05) after 24 and 36 min of ischemia, respectively. Total noradrenaline release due to various periods of ischemia mirrored its peak release. Function recovery was inversely related to total purine and noradrenaline efflux (both r =–0.81); it correlated with tissue nucleotide content (r = 0.84). In conclusion, larger amounts of noradrenaline are released only after a substantial drop in myocardial ATP. During severe ischemia ATP consumption more than limited ATP production by anaerobic glycolysis, is a key factor affecting recovery on subsequent reperfusion. In contrast to lactate efflux, purine and noradrenaline release are useful markers of ischemic and reperfusion damage.  相似文献   

2.
Fas ligand (FasL) is a member of tumor necrosis factor family that induces apoptosis in target cells that express Fas. The function of FasL during inflammation remains controversial. In this study, we examined the role of vascular endothelial FasL during acute myocardial ischemia-reperfusion that is closely associated with inflammation. Transgenic mouse lines were established that overexpress human FasL on endothelium under the control of the vascular endothelial cadherin promoter. Expression of FasL transgene was detected at both mRNA and protein levels, and functional transgene-encoded FasL protein was specifically expressed on the surface of vascular endothelial cells. Transgenic mice developed normally and had normal hearts. When subjected to 30 min of myocardial ischemia and 72 h of reperfusion, myocardial infarct size was reduced by 42% in the transgenic mice compared with nontransgenic littermates (p < 0.05). Moreover, hemodynamic data demonstrated that transgenic hearts performed better following ischemia and reperfusion compared with nontransgenic hearts. Myocardial neutrophil infiltration was reduced by 54% after 6 h of reperfusion in transgenic hearts (p < 0.01). Neutrophil depletion prior to ischemia-reperfusion injury led to smaller infarcts that were not different between transgenic and nontransgenic mice, suggesting that endothelial FasL may attenuate ischemia-reperfusion injury by abating the inflammatory response. These results indicate that vascular endothelial FasL may exert potent anti-inflammatory actions in the setting of myocardial ischemia-reperfusion injury.  相似文献   

3.
The effects of total ischemia and subsequent reperfusion on the formation of anaerobic metabolism products and their release into myocardial effluent were studied in isolated guinea pig hearts. During 30-min ischemia myocardial ATP and phosphocreatine decreased to 34 and 15% of the initial levels, respectively; this was accompanied by alanine formation and approximately stoichiometric glutamate loss. The increase in malate in ischemic myocardium corresponded to the anaplerotic flux aspartate----oxaloacetate----malate; the succinate production being commensurable to alpha-ketoglutarate formation in the alanine aminotransferase reaction. The release of lactate, alanine, succinate, creatine and pyruvate trace amounts into the myocardial effluent was observed during an early phase of the reperfusion using 1H-NMR. The rates of metabolite release reduced as follows: lactate much greater than alanine greater than succinate greater than creatine. By the 30th min of the reperfusion the decrease in these metabolites tissue contents was accompanied by the recovery of ATP and phosphocreatine levels up to 65 and 90% of the initial ones, respectively. The data obtained demonstrate that the formation and the release of succinate, alanine and creatine from the heart as well as of lactate may indicate profound disturbances in energy metabolism.  相似文献   

4.
This investigation aimed to assess whether the mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate (5-HD) could abolish the protection conferred by fasting and ischemic preconditioning (IPC) and to ascertain whether these effects are associated with glycogen breakdown and glycolytic activity. Langendorff perfused hearts of fed and 24-h fasted rats were exposed to 25 min ischemia plus 30 min reperfusion. IPC was achieved by a 3 min ischemia plus a 5 min reperfusion cycle. 5-HD (100 microM) perfusion begun 5 min before IPC or 13 min before sustained ischemia in the non preconditioned groups. Fasting improved the reperfusion recovery of contraction, decreased the contracture and the lactate production, increased glycogenolysis and did not affect the percentage of viable tissue. 5-HD abolished the effects of fasting on the contractile recovery but did not affect the contracture. 5-HD decreased the lactate production in the fed group, increased the preischemic glycogen content in both nutritional groups and did not affect the ischemic glycogen fall. IPC improved the contractile function but prevented the contracture only in the fed group, reduced lactate accumulation and glycogenolysis and evoked an increase of the viable tissue. 5-HD abolished the effects of IPC on the contractile recovery and did not affect its effect on the contracture, lactate production, glycogenolysis and viable tissue. These data suggest that the mitocondrial ATP-sensitive potassium channel is involved in the effects of fasting and IPC on the contractile function but the other cardioprotective and metabolic effects appear evoked through other mechanisms. Also suggest that besides the inhibition of the mitochondrial potassium channel, other mechanisms mediate the effects of 5-HD.  相似文献   

5.
We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58 +/- 1.12 vs. 13.39 +/- 1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34 +/- 0.93 vs. 21.22 +/- 4.28 micromol/g d.w., p<0.05) and higher coronary flow recovery (by 25%), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway.  相似文献   

6.
The aim of this study was to test the hypothesis that a decreased myocardial concentration of reduced glutathione (GSH) during ischemia renders the myocardium more susceptible to injury by reactive oxygen species generated during early reperfusion. To this end, rats were pretreated with L-buthionine-S,R-sulfoximine (2 mmol/kg), which depleted myocardial GSH by 55%. Isolated buffer-perfused hearts were subjected to 30 min of either hypothermic or normothermic no-flow ischemia followed by reperfusion. Prior depletion of myocardial GSH did not lead to oxidative stress during reperfusion, as myocardial concentration of glutathione disulfide (GSSG) was not increased after 5 and 30 min of reperfusion. In addition, prior depletion of GSH did not exacerbate myocardial enzyme release, nor did it impair the recoveries of tissue ATP, coronary flow rate and left ventricular developed pressure during reperfusion after either hypothermic or normothermic ischemia. Even administration of the prooxidant cumene hydroperoxide (20 M) to postischemic GSH-depleted hearts during the first 10 min of reperfusion did not aggravate postischemic injury, although this prooxidant load induced oxidative stress, as indicated by an increased myocardial concentration of GSSG. These results do not support the hypothesis that a reduced myocardial concentration of GSH during ischemia increases the susceptibility to injury mediated by reactive oxygen species generated during reperfusion. Apparently, myocardial tissue possesses a large excess of GSH compared to the quantity of reactive oxygen species generated upon reperfusion. (Mol Cell Biochem 156: 79-85, 1996)  相似文献   

7.
Cold ischemic storage of hearts for transplantation is limited to 4-6 h, and therefore the development of strategies to extend preservation time may increase the donor pool of hearts. Overexpression of A1-adenosine receptors (A1AR) can protect hearts from acute ischemic injury, and the purpose of this study was to test the hypothesis that overexpression of A1AR will improve tolerance to longer periods of cold ischemic preservation. Hearts from 18 wild type and 16 transgenic mice with overexpression of A1AR (A1AR Trans) were isolated and perfused, and then subjected to 18 h of preservation in 5 degrees C University of Wisconsin solution followed by 2 h of reperfusion. Left ventricular end diastolic pressure and left ventricular developed pressure were measured as indices of ventricular function. Cell viability was assessed by determination of infarct size and myocardial cell apoptosis. A1AR Trans hearts showed improved function following 18 h of ischemia, as shown by lower end diastolic pressure (p < 0.05) and higher recovery of left ventricular developed pressure (p < 0.05) during reperfusion. A1AR Trans hearts had markedly reduced infarct size (p < 0.05) and decreased apoptosis (p < 0.05). Overexpression of cardiac A1AR imparts cardioprotection during long-term cold ischemic preservation.  相似文献   

8.
This investigation aimed to assess whether the mitochondrial ATP-sensitive potassium channel opener diazoxide could reproduce the protection conferred by ischemic preconditioning and to ascertain whether its effects are associated with changes in glycogen breakdown and glycolytic activity. Hearts of fed and 24-h fasted rats were perfused with 10 mM glucose containing medium and exposed to 25 min no-flow ischemia plus 30 min reperfusion. Diazoxide (10 microM) perfusion was begun 10 min before ischemia and continued throughout the experiment. Fasting accelerated reperfusion recovery of contraction, reduced the post-ischemic contracture and decreased lactate accumulation during ischemia but had no effects on glycogen levels and cellular viability. Diazoxide, did not affect glycogen catabolism but improved reperfusion recovery of contraction. Furthermore, diazoxide reduced ischemic lactate accumulation and contracture amplitude only in the fed group whereas it improved cell viability in the fed and fasted groups. These data indicate that: 1) reduced lactate production which may attenuate myocyte acidification might explain, at least in part, the beneficial effects of diazoxide on mechanical function, although data obtained with the fasted rat hearts indicate that other mechanisms must be involved as well; 2) the reduction of lactate production occurring in the fed group, does not seem to be related to glycogenolysis; and 3) since diazoxide improved cell viability in the fasted rat group where it did not reduce glycolytic activity, other mechanisms may be responsible for this cytoprotective effect.  相似文献   

9.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

10.
Adaptation of myocardial energy substrate utilization may contribute to the cardioprotective effects of regular exercise, a possibility supported by evidence showing that pharmacological metabolic modulation is beneficial to ischemic hearts during reperfusion. Thus we tested the hypothesis that the beneficial effect of regular physical exercise on recovery from ischemia-reperfusion is associated with a protective metabolic phenotype. Function, glycolysis, and oxidation of glucose, lactate, and palmitate were measured in isolated working hearts from sedentary control (C) and treadmill-trained (T: 10 wk, 4 days/wk) female Sprague-Dawley rats submitted to 20 min ischemia and 40 min reperfusion. Training resulted in myocardial hypertrophy (1.65 +/- 0.05 vs. 1.30 +/- 0.03 g heart wet wt, P < 0.001) and improved recovery of function after ischemia by nearly 50% (P < 0.05). Glycolysis was 25-30% lower in T hearts before and after ischemia (P < 0.05), whereas rates of glucose oxidation were 45% higher before ischemia (P < 0.01). As a result, the fraction of glucose oxidized before and after ischemia was, respectively, twofold and 25% greater in T hearts (P < 0.05). Palmitate oxidation was 50-65% greater in T than in C before and after ischemia (P < 0.05), whereas lactate oxidation did not differ between groups. Alteration in content of selected enzymes and proteins, as assessed by immunoblot analysis, could not account for the reduction in glycolysis or increase in glucose and palmitate oxidation observed. Combined with the studies on the beneficial effect of pharmacological modulation of energy metabolism, the present results provide support for a role of metabolic adaptations in protecting the trained heart against ischemia-reperfusion injury.  相似文献   

11.
Interventions such as glycogen depletion, which limit myocardial anaerobic glycolysis and the associated proton production, can reduce myocardial ischemic injury; thus it follows that inhibition of glycogenolysis should also be cardioprotective. Therefore, we examined whether the novel glycogen phosphorylase inhibitor 5-Chloro-N-[(1S,2R)-3-[(3R,4S)-3,4-dihydroxy-1-pyrrolidinyl)]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide (ingliforib; CP-368,296) could reduce infarct size in both in vitro and in vivo rabbit models of ischemia-reperfusion injury (30 min of regional ischemia, followed by 120 min of reperfusion). In Langendorff-perfused hearts, constant perfusion of ingliforib started 30 min before regional ischemia and elicited a concentration-dependent reduction in infarct size; infarct size was reduced by 69% with 10 microM ingliforib. No significant drug-induced changes were observed in either cardiac function (heart rate, left ventricular developed pressure) or coronary flow. In open-chest anesthetized rabbits, a dose of ingliforib (15 mg/kg loading dose; 23 mg.kg(-1).h(-1) infusion) selected to achieve a free plasma concentration equivalent to an estimated EC(50) in the isolated hearts (1.2 microM, 0.55 microg/ml) significantly reduced infarct size by 52%, and reduced plasma glucose and lactate concentrations. Furthermore, myocardial glycogen phosphorylase a and total glycogen phosphorylase activity were reduced by 65% and 40%, respectively, and glycogen stores were preserved in ingliforib-treated hearts. No significant change was observed in mean arterial pressure or rate-pressure product in the ingliforib group, although heart rate was modestly decreased postischemia. In conclusion, glycogen phosphorylase inhibition with ingliforib markedly reduces myocardial ischemic injury in vitro and in vivo; this may represent a viable approach for both achieving clinical cardioprotection and treating diabetic patients at increased risk of cardiovascular disease.  相似文献   

12.
The lipophilic antioxidant Trolox C, a vitamin E analog, was administered to isolated, buffer-perfused rabbit hearts subjected to 25 min of global stop-flow ischemia and 30 min of reperfusion. In six hearts, Trolox C (200 microM) was infused for 15 min immediately prior to ischemia and for the first 15 min of reperfusion. Six control hearts received only vehicle. Gas chromatography analysis confirmed that effective myocardial levels of Trolox were attained. At 30 min reperfusion, the recovery of left ventricular developed pressure was 56 +/- 3% of baseline in control hearts versus 70 +/- 4% in Trolox-treated hearts (p < .01). There was also significant improvement in recovery of Trolox-treated hearts in diastolic pressure and both maximum and minimum values of the first derivative of left ventricular pressure (dP/dt). Creatine phosphokinase release into the coronary effluent at 30 min of reperfusion was 16.5 +/- 8.4 IU/min in untreated and 6.3 +/- 1.0 IU/min (p < .05) in Trolox-treated hearts. Thus Trolox C, a lipophilic antioxidant, attenuated myocardial injury during stop-flow ischemia and reperfusion.  相似文献   

13.
To explore the effects of GSL on myocardial reperfusion arrhythmia and lipid superoxidation in high cholesterol diet rats. Hyperlipidemia model was set up with administered high cholesterol emulsion 15 ml/kg to rats orally for 14 days. In GSL group, rats were given GSL i.p. 75 mg/kg simultaneously when administered high cholesterol emulsion. The experiment of myocardial ischemia reperfusion was performed on all rats. The results showed: (1) After administration of high cholesterol emulsion to rats orally for 14 days, hyperlipidemia model was set up successfully, simultaneously treatment with GSL. It lowered serum lipid; (2) In hyperlipidemia state, serum MDA increased (p < 0.01, SOD and NO decreased markedly (p < 0.01 and p < 0.05 respectively) after 2 h of myocardial reperfusion; the rate of reperfusion arrhythmia (RPAr) increased within 10 min of reperfusion, four out of nine rats died of ventricular fibrillation (VF); and (3) GSL decreased MDA, increased SOD and NO after 2 h of myocardial reperfusion. All changes were significant (p < 0.01); the rate of RPAr decreased, no VF occurred and all rats survived. Hyperlipidemia aggravated myocardial ischemia reperfusion injury and increased the incidence of RPAr. The results suggested that GSL reduced myocardial ischemia reperfusion injury and RPAr in high cholesterol diet state through antiperoxidating and inducing the production of NO.  相似文献   

14.
The effects of fasting and ischemic preconditioning (IP) on heart function of Langendorff-perfused rat hearts exposed to 25 min global ischemia plus 30 min reperfusion (RP), were correlated with lactate release and tissue-levels of long-chain acyl carnitine (LCCa) and CoA (LCCoA). IP was achieved by a 3 min ischemia plus a 5 min reperfusion cycle. Creatine kinase leakage was measured to assess the extent of cardiac injury. Fasting reduced the ischemic-induced contracture, improved RP recovery of mechanical function, reduced lactate release and increased the end-ischemia LCCoA and LCCa levels. Both in the fed and the fasted rat hearts IP delayed the pacemaker depression, reduced the amplitude of ischemic contracture and improved the RP recovery of contraction. However, IP reduced creatine kinase and lactate release only in the fed rat hearts. IP had no effects on tissue LCCa and LCCoA in both groups. These data suggest that: 1) beneficial effects of fasting may be ascribed, at least in part, to a reduced lactate production which may attenuate ischemic myocyte acidification and to the accumulation of fatty acyl esters which would favour citric acid cycle replenishment during RP. 2) beneficial effects of IP could be in part explained by the reduction of lactate production in the fed group although data obtained with the fasted rat heart indicate that another mechanisms must also be involved in the effects of IP. 3) accumulation of LCCoA and LCCa is not involved in the noxious effects of ischemia as well as in the protection effected by IP.  相似文献   

15.
The effect of ischemia on the formation of products of anaerobic metabolism and their release into the cardiac effluent in isolated perfused guinea pig hearts was studied. During 30 min normothermal ischemia, the myocardial ATP and phosphocreatine levels decreased to 34% and 15% of the initial values, respectively. The net alanine formation in ischemia was approximately a stoichiometric glutamate decrease; the increase in the tissue malate content corresponded to the aspartate----oxaloacetate----malate anaplerotic flux, the succinate production being commensurable to alpha-ketoglutaric acid formation in the alanine aminotransferase reaction. Using 1H-NMR, it was shown that the release of trace amounts of lactate, alanine, succinate, creatine and pyruvate into cardiac effluents occurred during the first 5 minutes of reperfusion. The rate of metabolite release decreased in the following order: lactate much greater than alanine greater than succinate greater than creatine. By the 30th minute of reperfusion, the decrease in the tissue levels of these metabolites to preischemic values was accompanied by the recovery of ATP and phosphocreatine to 65% and 90% of the initial levels, respectively. The data obtained suggest that the formation and release of alanine, creatine or succinate as well as lactate from ischemic myocardium may testify to significant disturbances in energy metabolism of the myocardium.  相似文献   

16.
The purpose of this study was to investigate the effects of bosentan, a mixed endothelin receptor A and B subtype antagonist, on myocardial ischemia-reperfusion injury and to explore the influence of the timing of bosentan administration on its cardioprotective effects. Adult rat hearts were perfused by the Langendorff technique with Krebs-Henseleit solution (KH) at a constant flow rate at 10 mL/min. Global myocardial ischemia was induced by stopping KH perfusion for 40 min, and this was followed by 60 min of reperfusion. Hearts were randomized to 1 of 3 experimental groups (n = 7 each): untreated control; treatment with bosentan 1 micromol/L 10 min prior to, during 40 min global ischemia, and for 15 min of reperfusion (BOS); or treatment with bosentan 1 micromol/L after 15 min of reperfusion (BOS-R). We observed that BOS-R, but not the BOS treatment regimen, significantly reduced the release of cardiac-specific creatine kinase and postischemic myocardial infarct size (P < 0.05 vs. control) without affecting myocardial contractility. Left ventricular developed pressure in the BOS group was significantly (P < 0.01) lower than that in the control group throughout reperfusion. It is concluded that pharmacologically delayed antagonism of endothelin-1 during reperfusion attenuates postischemic myocardial injury. Endothelin-1 antagonist application during early reperfusion may exacerbate postischemic myocardial dysfunction.  相似文献   

17.

Background

Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly by O-linked β-N-acetylglucosamine (O-GlcNAc). We aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms.

Methods

In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6–7 in each group) infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glucose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia.

Results

IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and without (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes (p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabetes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01).

Conclusions

Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.
  相似文献   

18.
缺血后心室功能减低(myocardial stunning)的发生机制迄今尚不明了。本实验以 Lang-cndorff 法在离体灌流的大鼠心脏,研究了全心缺血20min 及再灌注40min 后心肌 Ca~(2+)、Na~+K~+、Mg~(2+)及 H_2O 含量的变化,以及高渗甘露醇对缺血后功能低下心肌的影响。实验发现:(1)缺血/再灌注后心肌组织中 Ca~(2+),H_2O 的含量与非缺血组相比分别增加42%(P<0.01)及7.6%(P0.05)。(2)于再灌注同时给予12%高渗甘露醇可明显改善缺血后心室功能:再灌注40min 时,心率-左室压乘积恢复达缺血前的85%,而不给甘露醇仅恢复66.3%(p<0.01);高渗甘露醇同时消除了缺血后功能低下心肌中 Ca~(2+)超负荷与心肌水肿,此现象提示缺血/再灌注引起的肌膜非特异性通透性改变,很可能是钙进入细胞内的路径之一。本研究结果表明,心肌 Ca~(2+)超负荷及轻度心肌水肿参与了缺血后心室功能低下,高渗甘露醇在离体大鼠心脏可明显改善缺血后功能低下心肌的功能,此作用至少部分是由于其具有减低心肌钙与水含量的效应。  相似文献   

19.
There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.  相似文献   

20.
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 degrees C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 microL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 microL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 +/- 20, 43 +/- 6, and 95 +/- 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 +/- 4, 46 +/- 4, and 60 +/- 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% +/- 2%, 22% +/- 2%, and 20% +/- 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号