首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.  相似文献   

2.
Nicolas Demaurex  Damon Poburko  Maud Frieden 《BBA》2009,1787(11):1383-32541
The role of mitochondria in cell signaling is becoming increasingly apparent, to an extent that the signaling role of mitochondria appears to have stolen the spotlight from their primary function as energy producers. In this chapter, we will review the ionic basis of calcium handling by mitochondria and discuss the mechanisms that these organelles use to regulate the activity of plasma membrane calcium channels and transporters.  相似文献   

3.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

4.
AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O(2)) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKβ abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKβ.  相似文献   

5.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

6.
The aggregation of high affinity IgE receptors (Fc receptor I [FcRI]) on mast cells is potent stimulus for the release of inflammatory and allergic mediators from cytoplasmic granules. However, the molecular mechanism of degranulation has not yet been established. It is still unclear how FcRI-mediated signal transduction ultimately regulates the reorganization of the cytoskeleton and how these events lead to degranulation. Here, we show that FcRI stimulation triggers the formation of microtubules in a manner independent of calcium. Drugs affecting microtubule dynamics effectively suppressed the FcRI-mediated translocation of granules to the plasma membrane and degranulation. Furthermore, the translocation of granules to the plasma membrane occurred in a calcium-independent manner, but the release of mediators and granule–plasma membrane fusion were completely dependent on calcium. Thus, the degranulation process can be dissected into two events: the calcium-independent microtubule-dependent translocation of granules to the plasma membrane and calcium-dependent membrane fusion and exocytosis. Finally, we show that the Fyn/Gab2/RhoA (but not Lyn/SLP-76) signaling pathway plays a critical role in the calcium-independent microtubule-dependent pathway.  相似文献   

7.
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.  相似文献   

8.
In many biological systems, cells display spontaneous calcium oscillations (CaOs) and repetitive action-potential firing. These phenomena have been described separately by models for intracellular inositol trisphosphate (IP3)-mediated CaOs and for plasma membrane excitability. In this study, we present an integrated model that combines an excitable membrane with an IP3-mediated intracellular calcium oscillator. The IP3 receptor is described as an endoplasmic reticulum (ER) calcium channel with open and close probabilities that depend on the cytoplasmic concentration of IP3 and Ca2+. We show that simply combining this ER model for intracellular CaOs with a model for membrane excitability of normal rat kidney (NRK) fibroblasts leads to instability of intracellular calcium dynamics. To ensure stable long-term periodic firing of action potentials and CaOs, it is essential to incorporate calcium transporters controlled by feedback of the ER store filling, for example, store-operated calcium channels in the plasma membrane. For low IP3 concentrations, our integrated NRK cell model is at rest at -70 mV. For higher IP3 concentrations, the CaOs become activated and trigger repetitive firing of action potentials. At high IP3 concentrations, the basal intracellular calcium concentration becomes elevated and the cell is depolarized near -20 mV. These predictions are in agreement with the different proliferative states of cultures of NRK fibroblasts. We postulate that the stabilizing role of calcium channels and/or other calcium transporters controlled by feedback from the ER store is essential for any cell in which calcium signaling by intracellular CaOs involves both ER and plasma membrane calcium fluxes.  相似文献   

9.
Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.  相似文献   

10.
Varela D  Zamponi GW 《Neuron》2007,55(4):539-541
Calcium influx via L-type (Cav1.2 and Cav1.3) calcium channels is tightly regulated to ensure optimal intracellular calcium levels. Although much is known about acute modulation of these channels by second messengers, the mechanisms that control their trafficking to and from the plasma membrane remain poorly understood. In this issue of Neuron, Green and colleagues demonstrate that the opening of L-type calcium channels results in negative feedback regulation due to their calcium-dependent internalization.  相似文献   

11.
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmented mitochondria, decreased their total volume by 25-40%, and reduced the fraction of subplasmalemmal mitochondria by 4-fold. The cytosolic Ca2+ signals elicited by histamine were unaltered in cells lacking subplasmalemmal mitochondria as long as Ca2+ was present in the medium, but the signals were significantly blunted when Ca2+ was removed. Upon Ca2+ withdrawal, the free ER Ca2+ concentration decreased rapidly, and hFis1 cells were unable to respond to repetitive histamine stimulations. The loss of stored Ca2+ was due to an increased activity of plasma membrane Ca2+-ATPase (PMCA) pumps and was associated with an increased influx of Ca2+ and Mn2+ across store-operated Ca2+ channels. The increased Ca2+ influx compensated for the loss of stored Ca2+, and brief Ca2+ additions between successive agonist stimulations fully corrected subsequent histamine responses. We propose that the lack of subplasmalemmal mitochondria disrupts the transfer of Ca2+ from plasma membrane channels to the ER and that the resulting increase in subplasmalemmal [Ca2+] up-regulates the activity of PMCA. The increased Ca2+ extrusion promotes ER depletion and the subsequent activation of store-operated Ca2+ channels. Cells thus adapt to the lack of subplasmalemmal mitochondria by relying on external rather than on internal Ca2+ for signaling.  相似文献   

12.
Acid sphingomyelinase (ASMase) converts the lipid sphingomyelin (SM) to phosphocholine and ceramide and has optimum activity at acidic pH. Normally, ASMase is located in lysosomes and endosomes, but membrane damage or the interaction with some bacterial and viral pathogens can trigger its recruitment to the plasma membrane. Rhinovirus and measles viruses each require ASMase activity during early stages of infection. Both sphingomyelin and ceramide are important components of lipid rafts and are potent signaling molecules. Each plays roles in mediating macropinocytosis, which has been shown to be important for ebolavirus (EBOV) infection. Here, we investigated the role of ASMase and its substrate, SM, in EBOV infection. The work was performed at biosafety level 4 with wild-type virus with specificity and mechanistic analysis performed using virus pseudotypes and virus-like particles. We found that virus particles strongly associate with the SM-rich regions of the cell membrane and depletion of SM reduces EBOV infection. ASM-specific drugs and multiple small interfering RNAs strongly inhibit the infection by EBOV and EBOV glycoprotein pseudotyped viruses but not by the pseudotypes bearing the glycoprotein of vesicular stomatitis virus. Interestingly, the binding of virus-like particles to cells is strongly associated with surface-localized ASMase as well as SM-enriched sites. Our work suggests that ASMase activity and SM presence are necessary for efficient infection of cells by EBOV. The inhibition of this pathway may provide new avenues for drug treatment.  相似文献   

13.
Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).  相似文献   

14.
Homers are adapter proteins that play a significant role in the organization of calcium signaling protein complexes. Previous functional studies linked Homer proteins to calcium influx in nonexcitable cells. These studies utilized calcium imaging or whole-cell current recordings. Because of limited resolution of these methods, an identity of Homer-modulated ion channels remained unclear. There are several types of plasma membrane calcium influx channels in A431 cells. In the present study, we demonstrated that Homer dissociation resulted in specific activation of I(min) channels but not of I(max) channels in inside-out patches taken from A431 cells. In contrast, inositol 1,4,5-trisphosphate activated both I(min) and I(max) channels in inside-out patches. Short (1a) and long (1c) forms of Homer had different effects on I(min) channel activity. Homer 1a but not Homer 1c activated I(min) in the patches. This study indicates that I(min) channels are specifically regulated by Homer proteins in A431 cells.  相似文献   

15.
RasGRP1 is a Ras-activating exchange factor that is positively regulated by translocation to membranes. RasGRP1 contains a diacylglycerol-binding C1 domain, and it has been assumed that this domain is entirely responsible for RasGRP1 translocation. We found that the C1 domain can contribute to plasma membrane-targeted translocation of RasGRP1 induced by ligation of the B cell antigen receptor (BCR). However, this reflects cooperativity of the C1 domain with the previously unrecognized Plasma membrane Targeter (PT) domain, which is sufficient and essential for plasma membrane targeting of RasGRP1. The adjacent suppressor of PT (SuPT) domain attenuates the plasma membrane-targeting activity of the PT domain, thus preventing constitutive plasma membrane localization of RasGRP1. By binding to diacylglycerol generated by BCR-coupled phospholipase Cgamma2, the C1 domain counteracts the SuPT domain and enables efficient RasGRP1 translocation to the plasma membrane. In fibroblasts, the PT domain is inactive as a plasma membrane targeter, and the C1 domain specifies constitutive targeting of RasGRP1 to internal membranes where it can be activated and trigger oncogenic transformation. Selective use of the C1, PT, and SuPT domains may contribute to the differential targeting of RasGRP1 to the plasma membrane versus internal membranes, which has been observed in lymphocytes and other cell types.  相似文献   

16.
The recent discoveries of Stim1 and Orai proteins have shed light on the molecular makeup of both the endoplasmic reticulum Ca(2+) sensor and the calcium release-activated calcium (CRAC) channel, respectively. In this study, we investigated the regulation of CRAC channel function by extracellular Ca(2+) for channels composed primarily of Orai1, Orai2, and Orai3, by co-expressing these proteins together with Stim1, as well as the endogenous channels in HEK293 cells. As reported previously, Orai1 or Orai2 resulted in a substantial increase in CRAC current (I(crac)), but Orai3 failed to produce any detectable Ca(2+)-selective currents. However, sodium currents measured in the Orai3-expressing HEK293 cells were significantly larger in current density than Stim1-expressing cells. Moreover, upon switching to divalent free external solutions, Orai3 currents were considerably more stable than Orai1 or Orai2, indicating that Orai3 channels undergo a lesser degree of depotentiation. Additionally, the difference between depotentiation from Ca(2+) and Ba(2+) or Mg(2+) solutions was significantly less for Orai3 than for Orai1 or -2. Nonetheless, the Na(+) currents through Orai1, Orai2, and Orai3, as well as the endogenous store-operated Na(+) currents in HEK293 cells, were all inhibited by extracellular Ca(2+) with a half-maximal concentration of approximately 20 mum. We conclude that Orai1, -2, and -3 channels are similarly inhibited by extracellular Ca(2+), indicating similar affinities for Ca(2+) within the selectivity filter. Orai3 channels appeared to differ from Orai1 and -2 in being somewhat resistant to the process of Ca(2+) depotentiation.  相似文献   

17.
Extracts of certain malignant murine hematopoietic cells are shown to contain an enzyme which catalyses the release of the methylthio group from methylthioadenosine. The enzyme is extractable from cells of five cell lines which grow well in vitro without addition of S-methylthio compounds (RSSCH3). The enzyme activity is not present in cells of four lines which require methylthio groups for proliferation in vitro. The findings are consistent with the theory that the methylthio group is required in all dividing cells and that this group may be the essential product of the polyamine synthetic pathway.  相似文献   

18.
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (DeltaPsi(m)). We have found that staurosporine (STS) induces a loss in DeltaPsi(m) before GFP-Bax translocation can be measured. The onset of the DeltaPsi(m) loss is followed by a rapid and complete collapse of DeltaPsi(m) which is followed by Bax association with mitochondria. The mitochondria uncoupler FCCP, in the presence of the F(1)-F(0) ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of DeltaPsi(m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse DeltaPsi(m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.  相似文献   

19.
20.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca(2+) permeable ion channel using Ca(2+) indicators like fluo-3. These Single Channel Ca(2+) Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca(2+) sparks and Ca(2+) puffs caused by Ca(2+) release from intracellular stores (due to the opening of ryanodine receptors and IP(3) receptors, respectively). In contrast to intracellular Ca(2+) release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca(2+) handling in the vicinity of a channel with a known Ca(2+) influx, to obtain the Ca(2+) current passing through plasma membrane cation channels in near physiological solutions, to localize Ca(2+) permeable ion channels on the plasma membrane, and to estimate the Ca(2+) currents underlying those elementary events where the Ca(2+) currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca(2+) channels, and stretch-activated channels. For the L-type Ca(2+) channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca(2+) currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号