首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the intracellular pupil mechanism is examined by comparing the responses of photoreceptors in normal flies with those from white-eyed flies that lack the pupil. In white-eyed flies the response to an intensity increment of fixed contrast decreases at high background intensities. There is a smaller decrease in noise amplitude so that the signal:noise ratio falls. The intensity dependence of the photoreceptor signal:noise ratio fits a simple model in which activated photopigment molecules compete for 3 X 10(4) transduction units. The signal:noise ratio decreases at high intensities because the transduction units are saturated. This model is supported by a noise analysis, which provides three estimates of the number of events generating photoreceptor responses. In white-eyed flies the event number saturates at high background intensities, suggesting that a maximum of 2 X 10(4) events can be simultaneously active. Wild-type flies do not exhibit saturation effects over the range of intensities studied. The signal:noise ratio rises with intensity to reach a stable asymptote, close to the maximum observed for white-eyed flies. Pupil attenuation is calculated from measurements of signal:noise ratio in white-eyed and wild-type flies. The pupil is progressively activated over a two log unit intensity range and when fully closed attenuates the effective intensity by 99%. The threshold of this pupil effect coincides with the threshold of pupil activation measured optically. We conclude that the intracellular pupil attenuates the light flux to prevent receptor saturation and to extend the range of intensities at which fly photoreceptors operate close to their maximum signal:noise ratio. This upper limit is determined by the number of transduction units generating a cell's response.  相似文献   

2.
In a test situation where choice was not tied to reinforcement, both squirrel monkeys (Saimiri sciureus) and owl monkeys (Aotus trivirgatus) consistently chose to view the more luminant of a pair of lights. Over a two log unit range of luminance, the degree of preference in both species for the brighter of two lights was found to depend on their difference in luminance and not on their actual luminances.  相似文献   

3.
Abstract.  Although the ecology of diapause has been widely studied in the field, the underlying physiological responses occurring in tropical diapausing insects remain virtually unexplored. This is especially the case with rates of respiration in diapausing tropical insect species. The present study compares rates of metabolism, as assessed by measurement of carbon dioxide production, between two species of diapausing and reproductively active tropical butterflies, Euploea core (W.S Macleay) and Euploea sylvester (Fabricius) , independent of temperature. Measurement of metabolism over a day-time/night-time regime confirms that these tropical butterflies display a diurnal rhythm in accordance with many other tropical and temperate insect species, regardless of developmental state. In addition, diapausing Euploea butterflies display rates of carbon dioxide production only 28% lower than those of reproductively active butterflies, and can terminate diapause within days of receiving the correct cues. Maintaining a similar metabolic rate throughout diapause, as well as a rapid termination of diapause, would enable these tropical butterflies to respond immediately to larval host plant resources, without the disadvantage of missing optimum conditions, allowing the species to maximize their reproductive potential.  相似文献   

4.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

5.
This study evaluated the impact of the thermal environment on the flying behavior of male Japanese sulfur butterflies Colias erate searching for females in an open habitat. Thoracic temperature was monitored before and after flight. Mean thoracic temperature of butterflies immediately after landing was consistently higher than, but independent of, ambient temperature. Although ground speed of flying butterflies was different between flight types, air speed against the butterfly was similar across flight types. The excess of thoracic over ambient temperature was lower in flying butterflies than in basking ones, as predicted by a model. This difference appeared to be due to air current, which enhanced heat loss. In a laboratory study, newly eclosed male butterflies were placed under an incandescent lamp to measure their thoracic temperature at different air current speeds. The excess of thoracic over ambient temperature decreased as the speed of air currents increased. When the air current was similar to the air speed against flying butterflies in the field, a substantial decrease occurred in the operative thoracic temperature.  相似文献   

6.
Andrew Sih  James J. Krupa 《Oecologia》1996,107(2):179-188
Many different measures of range size are used for both empirical and conservation purposes. The possible consequences of the particular methods used in determining observed patterns of results are seldom considered. Using species of butterflies and freshwater molluses in Britain, we investigate the relationship between the range sizes measured by nine different methods and the sets of rare species they distinguish. A comparison of range sizes measured at different scales. Britain and Europe, is also made for the butterflies. We find that for many studies involving range size the various measures of range size are interchangeable. With respect to the identification of rare species the results are not as clear.  相似文献   

7.
Order Diptera of class insecta is of immense importance for the public and animal health and hygiene. Many dipteran flies are potential vectors of dreadful diseases. Therefore, it is required to have a simple characterization method and identification key for the field workers and entomologists. The present study fulfill the need and focus on the identification to generate a base line data with the help of original photographs. Nine families with 16 species of dipteran flies (other than mosquitoes) from Jeddah region of Saudi Arabia are included in this work. Major families which are more prevalent and common in this region are Muscidae, Calliphoridae, Sarcophagidae and Phoridae.  相似文献   

8.
Summary The hypothesis that the glow observable in dark adapted butterfly eyes is extinguished upon light adaptation by the action of migrating retinula cell pigment granules (Stavenga, 1975a) has been investigated. Experimental procedures applying optical methods to intact, living animals were similar to those used previously to investigate the migration of retinula cell pigment granules in Hymenoptera (Stavenga and Kuiper, 1977). The data obtained from nymphalid butterflies and Hymenoptera show close parallels, favouring the pigment migration hypothesis.The retinula cell pigment granules control the light flux in the butterfly rhabdom and hence are part of a pupil mechanism. The range of action of this pupil mechanism is about 3 log units of light intensity. The speed of pupil closure is slowed down with longer dark adaptation times. The way in which pupil processes can be distinguished from photochemical processes of the visual pigment is discussed.  相似文献   

9.
Firefly species (Lampyridae) vary in the color of their adult bioluminescence. It has been hypothesized that color is selected to enhance detection by conspecifics. One mechanism to improve visibility of the signal is to increase contrast against ambient light. High contrast implies that fireflies active early in the evening will emit yellower luminescence to contrast against ambient light reflected from green vegetation, especially in habitats with high vegetation cover. Another mechanism to improve visibility is to use reflection off the background to enhance the light signal. Reflectance predicts that sedentary females will produce greener light to maximize reflection off the green vegetation on which they signal. To test these predictions, we recorded over 7500 light emission spectra and determined peak emission wavelength for 675 males, representing 24 species, at 57 field sites across the Eastern United States. We found support for both hypotheses: males active early in more vegetated habitats produced yellower flashes in comparison to later‐active males with greener flashes. Further, in two of the eight species with female data, female light emissions were significantly greener as compared to males.  相似文献   

10.
In insects, the surface area of the compound eye increases with body size both within and between species with only a slight negative allometry. This increase in surface area permits changes in eye structure that affect the eye's acuity and sensitivity, two features of eye performance that cannot be simultaneously maximized. Hence, as eye size varies within a lineage, so will the compromises between features that maximize acuity and those that maximize sensitivity. We examined these compromises in four species of nymphalid butterflies that varied in body mass over almost two orders of magnitude. The largest of these species was crepuscular and so additionally may indicate the potential effect of life style on eye structure. Across these species, as body size increased, facet diameters increased while interommatidial angles decreased. Finally, the eye parameter was fairly constant across species except in the crepuscular species in which some notably large values were observed in the frontal visual field. Based on our measurements, large butterflies have more acute and more sensitive vision than smaller butterflies. However, full understanding of the behavioral implications of this relationship awaits information on the temporal resolution of their eyes because typical flight velocities also increase with body size.  相似文献   

11.
The toxicity of Bacillus thuringiensis subsp. israelensis to dipteran larvae (mosquitoes and black flies) depends on the presence of the pBtoxis plasmid. In this paper, two antibiotic resistance tagged pBtoxis were transferred by conjugation to other Bacillus cereus group strains. Among 15 potential recipients, only a lepidopteran active B. thuringiensis subspecies kurstaki and a B. cereus strain received the plasmid pBtoxis with a low transfer rate of about 10(-8) transconjugants/recipient. The resulting B. thuringiensis subspecies kurstaki transconjugant was active to both lepidopteran and dipteran targets and the B. cereus transconjugant was active against dipteran insects. Phase contrast microscopy showed that the B. cereus transconjugants could produce only round crystalline inclusion bodies while B. thuringiensis subspecies kurstaki transconjugant could produce both round and bipyramidal crystals during sporulation. SDS-PAGE revealed that all the major mosquitocidal proteins from pBtoxis could express in the two transconjugants, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa and Cyt1Aa. However, none of the experiment showed any indications of mobilising abilities of pBtoxis. The limited number of strains, which could receive and maintain pBtoxis using a conjugational helper plasmid, indicates a very narrow host range of the B. thuringiensis subsp. israelensis pBtoxis plasmid.  相似文献   

12.
Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb‐web spider Gasteracantha fornicata, whose yellow‐ or white‐banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers.  相似文献   

13.
Whenever the eye views a spatially-varying gradient of luminance, the Mach bands arise, causing a subjective distribution different from the luminance distribution of the field of view. This phenomenon has been used for the determination of the contrast-transfer function of the visual system when working under normal viewing conditions, i.e., operating in a region where both luminance and detail size are well above threshold. The Mach bands have been measured by making subjective photometric comparisons and the data have been analyzed under the assumption of linearity of response to input. The hypothesis that the visual system may be treated as an approximately linear link in the imaging chain is satisfied best when the luminances are plotted logarithmically. The possibility of this type of investigation is discussed. The result found is compared with apparent subjective contrast measurements of a sine-wave spatial luminance distribution.  相似文献   

14.
Data are presented which confirm previous findings that sympatric mimicry complexes dominated by unpalatable Neotropical ithomiine butterflies (Nymphalidae: Ithomiinae) are vertically stratified by height of flight. Flight height of ithomiine species is positively correlated with the height of their larval host-plants. Thus members of a mimicry complex utilize host-plants of similar heights. Non-mimetic British woodland butterflies also show a positive relationship between flight height and host-plant height, which suggests that the relationship is independent of mimicry. I propose that female butterflies fly at heights which maximize the probability of encountering their larval host-plants, and that males fly at similar heights to females in order to maximize the probability of encountering potential mates. Female butterflies probably encounter plants of similar heights to their larval hosts more frequently than they encounter plants of other heights. I suggest that butterfly species may therefore be more likely to make host shifts to plant species of a similar height to their current host-plants. Finally, I discuss how the relationship between flight height and height of larval host-plants, coupled with microhabitat-dependent selection on colour pattern, could lead to the evolution in sympatry of vertically stratified mimicry complexes.  相似文献   

15.
The causes and consequences of flower constancy have been thefocus of many studies, but almost all have examined the foragingbehavior of bumblebees, honeybees, or butterflies. We test whetherconstancy occurs in an overlooked group of pollinators, thesyrphid flies. Foraging sequences of wild flies of two species,Episyrphus balteatus and Syrphus ribesii were examined whenvisiting flowers in seminatural plant communities and in artificialarrays of two color morphs of Lobularia maritima planted ata range of frequencies. Both species exhibited marked floralconstancy when foraging in the mixed-plant community. Becauseall groups of pollinating insect so far examined exhibit constancyat least under some circumstances, we suggest that this is thepredominant strategy used by pollinators and that there is probablya common explanation. Neither syrphid species exhibited constancyto different color morphs within a plant species, in contrastto previously published studies of Hymenoptera foraging amongpolymorphic flowers, which all describe positive frequency-dependentselection. Possible explanations for this discrepancy are discussed.We argue that constancy in these syrphids is unlikely to resultfrom learning constraints on handling ability, currently themost widely accepted explanation for flower constancy, becausethey forage primarily for pollen which is easily located inmostflowers they visit.  相似文献   

16.
Using infrared reflectometry of the deep pseudopupil, we have measured the absolute sensitivity, the dynamic range and the speed of the pupil mechanism in the acone apposition eye of two tenebrionid beetles: Zophobas morio F. and Tenebrio molitor L. The following conclusions are made from the results:
  1. There is a substantial difference in sensitivity of the pupil mechanism between the two beetle species. The pupil is about 5.3 log units more sensitive in Zophobas than in Tenebrio.
  2. There is also a difference in sensitivity between day and night. Surprisingly, the sensitivity is higher at day-time, and the difference is about 0.5 log units in both Zophobas and Tenebrio.
  3. Light adaptation is completed faster during daytime than at night in both Zophobas and Tenebrio, whereas dark adaptation is completed about equally fast both day and night in both species. The speed of the pupil response, however, is dependent on the preceding adaptation history.
  4. The pupil mechanism in both species is under the influence of a circadian rhythm, which determines the size of the pupil aperture in such a way that the pupil is maximally open when dark-adapted at night, but only partially open when dark-adapted at daytime.
The differences in sensitivity and dynamics of the pupil mechanism between day and night are mainly due to the circadian rhythm setting the control range of the pupil aperture in both Zophobas and Tenebrio. The pupil differences between the two beetles are discussed regarding behavioural differences between the two species.  相似文献   

17.
Although trypanosomatids (Trypanosomatidae: Kinetoplastida) are common inhabitants of dipteran guts, prevalence in natural fly populations has not been studied. We investigated factors associated with trypanosomatid prevalence in eight species of woodland Drosophila (Drosophilidae: Diptera) collected from five sites in southwest Ohio. We collected infected flies from every site, over both years of our study, and from every Drosophila species. Prevalence differed with host species, but not between sites or with host sex. Prevalence was highest in the most abundant species, members of the subgenus Sophophora, species using decaying fruit as breeding sites, and those able to use more than one type of substrate for oviposition.  相似文献   

18.
Abstract As in most animals, male butterflies are generally the more proactive sex with respect to seeking out mating opportunities. In most cases, males conduct their search sometime between mid-morning and mid-afternoon, but a few species are active only before dawn or after sunset. These crepuscular species offer a good opportunity to study how males deal with markedly different visual and thermal conditions. Here, I present data from a 5-month behavioural study of male Melanitis leda (Nymphalidae) at a mate-encounter site in tropical Australia. Males of this species defended perching locations along a forest edge in a similar manner to other diurnally active territorial nymphalids. They generally arrived at these sites after sunset and arrived earlier on evenings that darkened earlier. Actively mate-locating males were only seen at the site during a 25−35 min evening period, during which ambient light levels ranged between 50 and 2600 lux. Only 27% of marked territory residents were recorded again at their location of capture, but fidelity in this 'resighted' group ranged up to 23 days. A sample of males, captured under ambient temperatures of 24.0−27.2°C, maintained a mean thoracic excess of 8.25 ± 0.73°C, but did not appear to 'shiver' in the manner of other crepuscular species. Males courted conspecific females and one mating was observed. This species is an excellent candidate for further research into the evolution of mating tactics in crepuscular butterflies.  相似文献   

19.
1. Morphological characteristics, especially coloration, are related to thermoregulation and camouflage, both of which are crucial for species survival and fitness. In cool environments such as the understorey of closed rainforests, darker organisms have thermal advantages and may be able to absorb heat more efficiently. However, such habitats are also suitable for darker organisms with respect to camouflage, making it difficult to elucidate whether the association of dark‐coloured organisms with shady environments is a consequence of thermal stress or predation pressure, or both. 2. In this study, butterfly communities were surveyed and artificial butterflies (mealworms attached to plastic sheeting to mimic adult butterflies) used to test whether differences in wing luminance are related to predation rates within open and closed habitats in monsoonal tropical forests of southwestern China. 3. Using artificial butterflies, significantly lower predation rates were found for dark‐coloured artificial butterflies within closed habitats, whereas such relationships were not found within open habitats. It was found that actual butterfly communities were also significantly darker in closed than in open habitats. 4. These results demonstrate that darker colours may have the effect of reducing predation rates in shady environments and that different habitat types can have contrasting effects on luminance and therefore predation risk.  相似文献   

20.
The order Diptera (true flies) are named for their two wings because their hindwings have evolved into specialized mechanosensory organs called halteres. Flies use halteres to detect body rotations and maintain stability during flight and other behaviours. The most recently diverged dipteran monophyletic subsection, the Calyptratae, is highly successful, accounting for approximately 12% of dipteran diversity, and includes common families like house flies. These flies move their halteres independently from their wings and oscillate their halteres during walking. Here, we demonstrate that this subsection of flies uses their halteres to stabilize their bodies during takeoff, whereas non-Calyptratae flies do not. We find that flies of the Calyptratae are able to take off more rapidly than non-Calyptratae flies without sacrificing stability. Haltere removal decreased both velocity and stability in the takeoffs of Calyptratae, but not other flies. The loss of takeoff velocity following haltere removal in Calyptratae (but not other flies) is a direct result of a decrease in leg extension speed. A closely related non-Calyptratae species (D. melanogaster) also has a rapid takeoff, but takeoff duration and stability are unaffected by haltere removal. Haltere use thus allows for greater speed and stability during fast escapes, but only in the Calyptratae clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号