首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propionyl-CoA carboxylase (PCC) is a biotin-dependent mitochondrial enzyme that catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA. PCC consists of two heterologous subunits, alpha PCC and beta PCC, which are encoded by the nuclear PCCA and PCCB genes, respectively. Deficiency of PCC results in a metabolic disorder, propionic acidemia, which is sufficiently severe to cause neonatal death. We have purified three PCCs containing pathogenic mutations in the beta subunit (R165W, E168K, and R410W) and one PCCB polymorphism (A497V) to homogeneity to elucidate the potential structural and functional effects of these substitutions. We observed no significant difference in Km values for propionyl-CoA between wild-type and the variant enzymes, which indicated that these substitutions had no effect on the affinity of the enzyme for this substrate. Furthermore, the kinetic studies indicated that mutation R410W was not involved in propionyl-CoA binding in contrast to a previous report. The three mutant PCCs had half the catalytic efficiency of wild-type PCC as judged by the kcat/Km ratios. No significant differences have been observed in molecular mass or secondary structure among these enzymes. However, the variant PCCs were less thermostable than the wild-type. Following incubation at 47 degrees C, blue native-PAGE revealed a lower oligomeric form (alpha2beta2) in the three mutants not detectable in wild-type and the polymorphism. Interestingly, the lower oligomeric form was also observed in the corresponding crude Escherichia coli extracts. Our biochemical data and the structural analysis using a beta PCC homology model indicate that the pathogenic nature of these mutations is more likely to be due to a lack of assembly rather than disruption of catalysis. The strong favorable effect of the co-expressed chaperone proteins on PCC folding, assembly, and activity suggest that propionic acidemia may be amenable to chaperone therapy.  相似文献   

2.
Transcarboxylase from Propionibacterium shermanii is a 1.2 MDa multienzyme complex that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate, yielding propionyl-CoA and oxaloacetate. The 1.9 A resolution crystal structure of the central 12S hexameric core, which catalyzes the first carboxylation reaction, has been solved bound to its substrate methylmalonyl-CoA. Overall, the structure reveals two stacked trimers related by 2-fold symmetry, and a domain duplication in the monomer. In the active site, the labile carboxylate group of methylmalonyl-CoA is stabilized by interaction with the N-termini of two alpha-helices. The 12S domains are structurally similar to the crotonase/isomerase superfamily, although only domain 1 of each 12S monomer binds ligand. The 12S reaction is similar to that of human propionyl-CoA carboxylase, whose beta-subunit has 50% sequence identity with 12S. A homology model of the propionyl-CoA carboxylase beta-subunit, based on this 12S crystal structure, provides new insight into the propionyl-CoA carboxylase mechanism, its oligomeric structure and the molecular basis of mutations responsible for enzyme deficiency in propionic acidemia.  相似文献   

3.
On the intermediacy of carboxyphosphate in biotin-dependent carboxylations   总被引:1,自引:0,他引:1  
T Ogita  J R Knowles 《Biochemistry》1988,27(21):8028-8033
In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). We have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-[( alpha, beta-18O, beta, beta-18O2]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, we showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18O label directly from [18O]bicarbonate into the product Pi. This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously.  相似文献   

4.
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.  相似文献   

5.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

6.
Biotin carboxylase from Escherichia coli catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase, which catalyzes the committed step in long-chain fatty acid synthesis. Comparison of the crystal structures of biotin carboxylase in the absence and presence of ATP showed a central B-domain closure when ATP was bound. Peptidic NH groups from two active site glycine residues (Gly165 and Gly166) that form hydrogen bonds to the phosphate oxygens of ATP were postulated to act as a "trigger" for movement of the B-domain. The function of these two glycine residues in the catalytic mechanism was studied by disruption of the hydrogen bonds using site-directed mutagenesis. Both single (G165V) and (G166V) and double mutants (G165V-G166V) were constructed. The mutations did not affect the maximal velocity of a partial reaction, the bicarbonate-dependent ATPase activity. This suggests that the peptidic NH groups of Gly165 and Gly166 are not triggers for domain movement. However, the K(m) values for ATP for each of the mutants was increased over 40-fold when compared with wild-type indicating the peptidic NH groups of Gly165 and Gly166 play a role in binding ATP. Consistent with ATP binding, the maximal velocity for the biotin-dependent ATPase activity (i.e. the complete reaction) was decreased over 100-fold suggesting the mutations have misaligned the reactants for optimal catalysis. Molecular dynamics studies confirm perturbation of the hydrogen bonds from the mutated residues to ATP, whereas the double mutant exhibits antagonistic effects such that hydrogen bonding from residues 165 and 166 to ATP is similar to that in the wild-type. Consistent with the site-directed mutagenesis results the molecular dynamics studies show that ATP is misaligned in the mutants.  相似文献   

7.
A heat-stable endogenous CO(2) acceptor has been found in extracts of Rhodospirillum rubrum grown photoheterotrophically on acetate. Evidence is presented which suggests that this factor is propionic acid. Thus, paper and gas chromatographic analyses have indicated that propionic acid is present in boiled extracts prepared from R. rubrum cells. The products of (14)CO(2) fixation obtained with either the boiled extract or propionic acid as the CO(2) acceptor were identical and were identified as methylmalonic acid and succinic acid by paper chromatography. The enzyme which catalyzes the carboxylation of propionyl-coenzyme A (propionyl-CoA carboxylase) was purified from R. rubrum cells grown on acetate and its properties were studied. The enzyme is similar to propionyl-CoA carboxylases isolated from mammalian sources.  相似文献   

8.
The first committed step in long-chain fatty acid synthesis is catalyzed by the multienzyme complex acetyl CoA carboxylase. One component of the acetyl CoA carboxylase complex is biotin carboxylase which catalyzes the ATP-dependent carboxylation of biotin. The Escherichia coli form of biotin carboxylase can be isolated from the other components of the acetyl CoA carboxylase complex such that enzymatic activity is retained. The synthesis of a reaction intermediate analog inhibitor of biotin carboxylase has been described recently (Organic Lett. 1, 99-102, 1999). The inhibitor is formed by coupling phosphonoacetic acid to the 1'-N of biotin. In this paper the characterization of the inhibition of biotin carboxylase by this reaction-intermediate analog is described. The analog showed competitive inhibition versus ATP with a slope inhibition constant of 8 mM. Noncompetitive inhibition was found for the analog versus biotin. Phosphonoacetate exhibited competitive inhibition with respect to ATP and noncompetitive inhibition versus bicarbonate. Biotin was found to be a noncompetitive substrate inhibitor of biotin carboxylase. These data suggested that biotin carboxylase had an ordered addition of substrates with ATP binding first followed by bicarbonate and then biotin.  相似文献   

9.
The activities of four biotin enzymes, acetyl-coenzyme A (CoA) carboxylase, 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase, and the accumulation of six biotin-containing polypeptides were determined during development of somatic embryos of carrot (Daucus carota). Acetyl-CoA carboxylase activity increased more than sevenfold, whereas the activities of 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase were relatively unaltered. An increase also occurred in the accumulation of three of the biotin-containing polypeptides (molecular masses of 220, 62, and 34 kilodaltons). Of these, the most dramatic change was in the accumulation of the 62-kilodalton biotin-containing polypeptide, which increased by at least 50-fold as embryogenic cell clusters developed into torpedo embryos.  相似文献   

10.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report a system for site-directed mutagenesis of the biotin carboxylase component is described. The wild-type copy of the enzyme, derived from the chromosomal gene, is separated from the mutant form of the enzyme which is coded on a plasmid. Separation of the two forms is accomplished using a histidine-tag attached to the amino terminus of the mutant form of the enzyme and nickel affinity chromatography. This system was used to mutate four active site residues, E211, E288, N290, and R292, to alanine followed by their characterization with respect to several different reactions catalyzed by biotin carboxylase. In comparison to wild-type biotin carboxylase, all four mutant enzymes gave very similar results in all the different assays, suggesting that the mutated residues have a common function. The mutations did not affect the bicarbonate-dependent ATPase reaction. In contrast, the mutations decreased the maximal velocity of the biotin-dependent ATPase reaction 1000-fold but did not affect the Km for biotin. The activity of the ATP synthesis reaction catalyzed by biotin carboxylase where carbamoyl phosphate reacts with ADP was decreased 100-fold by the mutations. The ATP synthesis reaction required biotin to stimulate the activity in the wild-type; however, biotin did not stimulate the activity of the mutant enzymes. The results showed that the mutations have abolished the ability of biotin to increase the activity of the enzyme. Thus, E211, E288, N290, and R292 were responsible, at least in part, for the substrate-induced synergism by biotin in biotin carboxylase.  相似文献   

11.
Propionic acidemia (PA, MIM 232000 and 232050) is caused by a deficiency of mitochondrial biotin-dependent propionyl-CoA carboxylase (PCC, EC 6.4.1.3), a heteropolymeric enzyme composed of alpha and beta subunits, which are encoded by the PCCA and PCCB genes, respectively. The PCCA protein (alpha subunit) is responsible for the formation of carboxybiotin upon hydrolysis of ATP and contains a C-terminal biotin-binding domain and a biotin carboxylase domain, defined by homology with other biotin-dependent carboxylases, some of them characterized structurally. More than 24 mutations have been found in the PCCA gene in patients with PA, among them 14 missense mutations and one in-frame deletion, for which the precise molecular effect is unknown. In this study, we have established the pathogenicity of 11 PCCA mutations (10 missense and an in-frame deletion) by expression studies in deficient fibroblasts and in a cell-free in vitro system, and analyzed the effect of each mutation on PCC activity, protein stability and domain structure. The results show that most mutant proteins show an increased turnover and are functionally deficient, suggesting that the structural alterations they cause are incompatible with normal assembly to produce a stable, functional PCC oligomer. These results are discussed in the context of the genotype-phenotype correlations in PCCA-deficient PA patients.  相似文献   

12.
13.
14.
Human holocarboxylase synthetase (HCS) catalyzes linkage of the vitamin biotin to the biotin carboxyl carrier protein (BCCP) domain of five biotin-dependent carboxylases. In the two-step reaction, the activated intermediate, bio-5'-AMP, is first synthesized from biotin and ATP, followed by covalent linkage of the biotin moiety to a specific lysine residue of each carboxylase BCCP domain. Selectivity in HCS-catalyzed biotinylation to the carboxylases was investigated in single turnover stopped flow and quench flow measurements of biotin transfer to the minimal biotin acceptor BCCP fragments of the carboxylases. The results demonstrate that biotinylation of the BCCP fragments of the mitochondrial carboxylases propionyl-CoA carboxylase, pyruvate carboxylase, and methylcrotonoyl-CoA carboxylase is fast and limited by the bimolecular association rate of the enzyme with substrate. By contrast, biotinylation of the acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) fragments, both of which are accessible to HCS in the cytoplasm, is slow and displays a hyperbolic dependence on substrate concentration. The correlation between HCS accessibility to biotin acceptor substrates and the kinetics of biotinylation suggests that mitochondrial carboxylase sequences evolved to produce fast association rates with HCS in order to ensure biotinylation prior to mitochondrial import. In addition, the results are consistent with a role for HCS specificity in dictating biotin distribution among carboxylases.  相似文献   

15.
Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.  相似文献   

16.
Acetyl-CoA carboxylase is the sole biotin enzyme previously reported in plants. Western analysis with 125I-streptavidin of proteins extracted from carrot somatic embryos visualized six biotin-containing polypeptides, the relative molecular masses of which are 210,000, 140,000, 73,000, 50,000, 39,000, and 34,000. This multiplicity of the biotin-containing polypeptides can be partly explained by the discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase, and pyruvate carboxylase in extracts of somatic carrot embryos, biotin enzymes previously unknown in the plant kingdom. These biotin enzymes seem to be widely distributed in the plant kingdom.  相似文献   

17.
When we incubated biotin carboxylase from Escherichia coli with ATP in absence of biotin we observed HCO3- -dependent ATP hydrolysis, which was activated by 10% ethanol in the same proportion as the activity of D-biotin carboxylation assayed in the presence of biotin. The two activities exhibited identical heat stability and were protected equally by glycerol; both required Mg2+ and K+ and showed similar dependency on the concentration of ATP. Biotin assay excluded potential contamination by traces of biotin as a cause of the observed ATP hydrolysis, and this was confirmed by the findings that carboxybiotin did not accumulate and that avidin was uninhibitory. Therefore we concluded that this HCO3- -dependent ATPase was genuinely a partial activity of biotin carboxylase. This partial activity supports a sequential mechanism for enzymatic carboxylation of biotin in which HCO3- is activated by ATP in a first step. It is consistent with the initial formation of the carbonic-phosphoric anhydride (HOCO2PO3(2-)), and it does not agree with models where biotin is phosphorylated by ATP prior to reaction with HCO3-. It appears that enzymes that use HCO3- for carboxylation, including biotin-dependent carboxylases, phosphoenolpyruvate carboxylase, and carbamoyl phosphate synthetase, activate HCO3- by a common mechanism involving the initial formation of the carbonic-phosphoric anhydride.  相似文献   

18.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-A resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the three-dimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-A resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45(o) of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.  相似文献   

19.
Acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) catalyze the carboxylation of acetyl- and propionyl-CoA to generate malonyl- and methylmalonyl-CoA, respectively. Understanding the substrate specificity of ACC and PCC will (1) help in the development of novel structure-based inhibitors that are potential therapeutics against obesity, cancer, and infectious disease and (2) facilitate bioengineering to provide novel extender units for polyketide biosynthesis. ACC and PCC in Streptomyces coelicolor are multisubunit complexes. The core catalytic beta-subunits, PccB and AccB, are 360 kDa homohexamers, catalyzing the transcarboxylation between biotin and acyl-CoAs. Apo and substrate-bound crystal structures of PccB hexamers were determined to 2.0-2.8 A. The hexamer assembly forms a ring-shaped complex. The hydrophobic, highly conserved biotin-binding pocket was identified for the first time. Biotin and propionyl-CoA bind perpendicular to each other in the active site, where two oxyanion holes were identified. N1 of biotin is proposed to be the active site base. Structure-based mutagenesis at a single residue of PccB and AccB allowed interconversion of the substrate specificity of ACC and PCC. The di-domain, dimeric interaction is crucial for enzyme catalysis, stability, and substrate specificity; these features are also highly conserved among biotin-dependent carboxyltransferases. Our findings enable bioengineering of the acyl-CoA carboxylase (ACCase) substrate specificity to provide novel extender units for the combinatorial biosynthesis of polyketides.  相似文献   

20.
M L Hector  R R Fall 《Biochemistry》1976,15(16):3465-3472
Pseudomonas citronellolis was shown to contain four different acyl-coenzyme A carboxylases, including acetyl-, propionyl-, 3-methylcrotonyl-, and geranyl-CoA carboxylases, when grown on the appropriate carbon sources. Acetyl-CoA carboxylase activity in crude extracts was stimulated approximately 40-fold by inclusion of 0.4-0.5 M ammonium sulfate in the assay. Unexpectedly high levels of propionyl-CoA carboxylase activity, also stimulated by ammonium sulfate, were found in acetate-grown cells. That these acetyl- and propionyl-CoA carboxylase activities were due to different enzymes was shown by their resolution during purification by a procedure that stabilized acetyl-CoA carboxylase as a complex and separated propionyl-CoA carboxylase into two required protein fractions. Propionate- or valine-grown cells contained a propionyl-CoA carboxylase activity that was strongly inhibited by ammonium sulfate in the assay, and which may represent an inducible form of the enzyme. Geranyl- and 3-methylcrotonyl-CoA carboxylases that catalyze the carboxylation of the 3-methyl groups of homologous acyl-CoA acceptors, were induced by growth on the monoterpenes, citronellic or geranoic acid; only 3-methylcrotonyl-CoA carboxylase was induced by growth on leucine or isovaleric acid. Induction of either carboxylase was associated with the appearance of similar high-molecular-weight, biotin-containing proteins as measured by gel filtration. These two carboxylases are probably distinct enzymes since 3-methyl-crotonyl-CoA carboxylase from isovalerate-grown cells does not carboxylate geranyl-CoA, while geranyl-CoA carboxylase will carboxylate both acyl-CoA homologues. P. citronellolis appears to be a useful system for studying the structural aspects of pairs of homologous acyl-CoA carboxylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号