首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

2.
N-acetyl-d-neuraminic acid (NeuAc; sialic acid) is a precursor for the manufacture of many pharmaceutical drugs, such as anti-influenza virus agents. To develop a whole cell process for NeuAc production, genes of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase (bage) and Escherichia coli N-acetyl-d-neuraminic acid lyase (nanA) were cloned and expressed in E. coli BL21 (DE3). The expressed bGlcNAc 2-epimerase was purified from the crude cell extract of IPTG-induced E. coli BL21 (DE3) (pET-bage) to homogeneity by nickel-chelate chromatography. The molecular mass of the purified bGlcNAc 2-epimerase was determined to be 42kDa by SDS-PAGE. The pH and temperature optima of the recombinant bGlcNAc 2-epimerase were pH 7.0 and 50 degrees C, respectively, and only needs 20mum ATP for maximal activity. The specific activity of bGlcNAc 2-epimerase (124Umg(-1) protein) for the conversion of N-acetyl-d-glucosamine to N-acetyl-d-manosamine was about four-fold higher than that of porcine N-acetyl-d-glucosamine 2-epimerase. A stirred glass vessel containing transformed E. coli cells expressing age gene from Anabaena sp. CH1 and NeuAc lyase gene from E. coli NovaBlue separately was used for the conversion of GlcNAc and pyruvate to NeuAc. A maximal productivity of 10.2gNeuAcl(-1)h(-1) with 33.3% conversion yield from GlcNAc could be obtained in a 12-h reaction. The recombinant E. coli cells can be reused for more than eight cycles with a productivity of >8.0gNeuAcL(-1)h(-1). In this process, the expensive activator, ATP, necessary for maximal activity of GlcNAc 2-epimerase in free enzyme system can be omitted.  相似文献   

3.
The K1 capsular polysaccharide, a polymer of sialic acid, is an important virulence determinant of extraintestinal pathogenic Escherichia coli. The genes responsible for the synthesis and expression of the polysialic acid capsule of E. coli K1 are located on the 17-kb kps gene cluster, which is functionally divided into three regions. Central region 2 encodes proteins necessary for the synthesis, activation, and polymerization of sialic acid, while flanking regions 1 and 3 are involved in polymer transport to the cell surface. In this study, we identified two genes at the proximal end of region 2, neuD and neuB, which encode proteins with predicted sizes of 22.7 and 38.7 kDa, respectively. Several observations suggest that the neuB gene encodes sialic acid synthase. EV24, a neuB chromosomal mutant that expresses a capsule when provided exogenous sialic acid, could be complemented in trans by the cloned neuB gene. In addition, NeuB has significant sequence similarity to the product of the cpsB gene of Neisseria meningitidis group B, which is postulated to encode sialic acid synthase. We also present data indicating that neuD has an essential role in K1 polymer production. Cells harboring pSR426, which contains all of region 2 but lacks region 1 and 3 genes, produce an intracellular polymer. In contrast, no polymer accumulated in cells carrying a derivative of pSR426 lacking a functional neuD gene. Unlike strains with mutations in neuB, however, neuD mutants are not complemented by exogenous sialic acid, suggesting that NeuD is not involved in sialic acid synthesis. Additionally, cells harboring a mutation in neuD accumulated sialic acid and CMP-sialic acid. We also found no significant differences between the endogenous and exogenous sialyltransferase activities of a neuD mutant and the wild-type organism. NeuD shows significant similarity to a family of bacterial acetyltransferases, leading to the theory that NeuD is an acetyltransferase which may exert its influences through modification of other region 2 proteins.  相似文献   

4.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

5.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

6.
Most microorganisms do not produce sialic acid (sialate), and those that do appear to use a biosynthetic mechanism distinct from mammals. Genetic hybrids of nonpathogenic, sialate-negative laboratory Escherichia coli K-12 strains designed for the de novo synthesis of the polysialic acid capsule from E. coli K1 proved useful in elucidating the genetics and biochemistry of capsule biosynthesis. In this article we propose a dynamic model of sialometabolism to investigate the effects of biosynthetic neu (N-acetylneuraminic acid) and catabolic nan (N-acylneuraminate) mutations on the flux of intermediates through the sialate synthetic pathway. Intracellular sialate concentrations were determined by high pH anion exchange chromatography with pulsed amperometric detection. The results indicated that a strain carrying a null defect in the gene encoding polysialyltransferase (neuS) accumulated > 50 times more CMP-sialic acid than the wild type when strains were grown in a minimal medium supplemented with glucose and casamino acids. Metabolic accumulation of CMP-sialic acid depended on a functional sialic acid synthase (neuB), as shown by the inability of a strain lacking this enzyme to accumulate a detectable endogenous sialate pool. The neuB mutant concentrated trace sialate from the medium, indicating its potential value for quantitative analysis of free sialic acids in complex biological samples. The function of the sialate aldolase (encoded by nanA) in limiting intermediate flux through the synthetic pathway was determined by analyzing free sialate accumulation in neuA (CMP-sialic acid synthetase) nanA double mutants. The combined results demonstrate how E. coli avoids a futile cycle in which biosynthetic sialate induces the system for its own degradation and indicate the feasibility of generating sialooligosaccharide precursors through targeted manipulation of sialate metabolism.  相似文献   

7.
A variety of pathogens or commensals use at least one of four distinct mechanisms for decorating their surfaces with sialic acid as a strategy to avoid, subvert or inhibit host innate immunity. The metabolism of sialic acid thus is central to a range of host-pathogen interactions. The first committed step in this process, the production of free N-acetylmannosamine (ManNAc), has not been defined. Here we show that ManNAc-6-phosphate (ManNAc-6-P) is not an obligate sialate precursor in Escherichia coli K1. This conclusion was supported by 31P NMR spectroscopy of E. coli K1 derivatives engineered with different combinations of mutations in nanA (sialate aldolase or lyase), nanK (ManNAc kinase), nanE (ManNAc-6-P 2-epimerase), neuS (polysialyltransferase) and neuB (sialate synthase). The product specificities for purified NanK and NanE were determined by chromatographic analyses. Direct biochemical analysis showed that ManNAc-6-P was stable in a nanE mutant extract. The combined results indicate that neither ManNAc-6-P nor specific or non-specific phosphatase are necessary to generate the requisite ManNAc for sialate biosynthesis. Our results imply that the neuC gene product encodes an UDP-N-acetylglucosamine 2-epimerase that generates ManNAc directly from the dinucleotide-sugar precursor despite detection of only this enzyme's UDP-GlcNAc hydrolase activity. This study describes the first use of NMR for analysing intermediate flux within the sialate biosynthetic pathway.  相似文献   

8.
The Bacillus sphaericus gene coding for penicillin V amidase, which catalyzes the hydrolysis of penicillin V to yield 6-aminopenicillanic acid and phenoxyacetic acid, has been isolated by molecular cloning in Escherichia coli. The gene is contained within a 2.2-kilobase HindIII-PstI fragment and is expressed when transferred into E. coli and Bacillus subtilis. The expression in B. subtilis carrying the recombinant plasmid is approximately two times higher than in the original B. sphaericus strain. A comparison of the purified enzyme from B. sphaericus and the expressed gene product in E. coli minicells suggests that the native enzyme consists of four identical subunits, each with a molecular weight of 35,000.  相似文献   

9.
10.
We have established an efficient method for enzymatic production of cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) from inexpensive materials, N-acetylglucosamine (GlcNAc) and cytidine 5'-monophosphate (CMP). The Haemophilus influenzae nanE gene encoding GlcNAc 6-phosphate (GlcNAc 6-P) 2-epimerase and the Campylobacter jejuni neuB1 gene encoding N-acetylneuraminic acid (NeuAc) synthetase, both of whose products are involved in NeuAc biosynthesis, were cloned and co-expressed in Escherichia coli cells. We examined the synthesis of NeuAc from GlcNAc via GlcNAc 6-P, N-acetylmannosamine (ManNAc) 6-P, and ManNAc by the use of E. coli cells producing GlcNAc 6-P 2-epimerase and NeuAc synthetase, in expectation of biological functions of E. coli such as the supply of phosphoenolpyruvate (PEP), which is an essential substrate for NeuAc synthetase, GlcNAc phospholylation by the PEP-dependent phosphotransferase system, and dephospholylation of ManNAc 6-P. Eleven mM NeuAc was synthesized from 50 mM GlcNAc by recombinant E. coli cells with the addition of glucose as an energy source. Next we attempted to synthesize CMP-NeuAc from GlcNAc and CMP using yeast cells, recombinant E. coli cells, and H. influenzae CMP-NeuAc synthetase, and succeeded in efficient production of CMP-NeuAc due to a sufficient supply of PEP and efficient conversion of CMP to cytidine 5'-triphosphate by yeast cells.  相似文献   

11.
12.
利用同源重组基因敲除方法构建猪链球菌2型强毒株05ZYH33唾液酸合成酶neuB基因敲除突变株。PCR和Southern杂交结果均显示neuB基因在1株转化重组体中完全被壮观霉素抗性基因替代, 表明neuB基因敲除突变体构建成功。生物学特性鉴定显示, 突变体与强毒株在菌落形态、溶血活性以及染色特性方面均无明显差异; 电镜检查发现突变体表面结构组分与强毒株有显著差异, 荚膜明显变薄, 质地更加紧密; 小鼠致病性试验结果显示, 突变体毒力显著减弱。研究结果提示菌体荚膜中的唾液酸对于猪链球菌2型侵袭和致病具有重要作用。  相似文献   

13.
The Bacillus subtilis dihydrofolate reductase (DHFR) gene was expressed in Escherichia coli. The gene product was purified to homogeneity by Butyl-Toyopearl, Toyopearl HW55, and DEAE-Toyopearl column chromatographies, and its molecular properties were compared to those of E. coli DHFR. The specific enzyme activity of the B. subtilis DHFR was 240 units/mg under the standard assay conditions, being about four times higher than that of the E. coli DHFR. Km for coenzyme NADPH was 20.7 microM, a value about three times larger than that of E. coli, whereas Km (1.5 microM) for the substrate, dihydrofolate, was similar to that of E. coli DHFR. This seems to reflect the low homology of the amino acid sequence in residues 61-88 of the two DHFRs where one of the NADPH binding sites is located [Bystrof, C. & Kraut, J. (1991) Biochemistry 30, 2227-2239]. Similar to the E. coli DHFR [Iwakura, M. et al. (1992) J. Biochem. 111, 37-45], the extension of amino acid sequences at the C-terminal end of the B. subtilis DHFR could be attained without loss of the enzyme function or decrease of the protein yield. Thus, the DHFR is useful as a carrier protein for expressing small polypeptides, such as leucine enkephalin, bradykinin, and somatostatin.  相似文献   

14.
3,4-Dihydroxy-2-butanone 4-phosphate is biosynthesized from ribulose 5-phosphate and serves as the biosynthetic precursor for the xylene ring of riboflavin. The gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli has been cloned and sequenced. The gene codes for a protein of 217 amino acid residues with a calculated molecular mass of 23,349.6 Da. The enzyme was purified to near homogeneity from a recombinant E. coli strain and had a specific activity of 1,700 nmol mg-1 h-1. The N-terminal amino acid sequence and the amino acid composition of the protein were in agreement with the deduced sequence. The molecular mass as determined by ion spray mass spectrometry was 23,351 +/- 2 Da, which is in agreement with the predicted mass. The previously reported loci htrP, "luxH-like," and ribB at 66 min of the E. coli chromosome are all identical to the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase, but their role had not been hitherto determined. Sequence homology indicates that gene luxH of Vibrio harveyi and the central open reading frame of the Bacillus subtilis riboflavin operon code for 3,4-dihydroxy-2-butanone 4-phosphate synthase.  相似文献   

15.
We have previously described a microbiological process for the conversion of lactose into 3'sialyllactose and other ganglioside sugars by living Escherichia coli cells expressing the appropriate recombinant glycosyltransferase genes. In this system the activated sialic acid donor (CMP-Neu5Ac) was generated from exogenous sialic acid, which was transported into the cells by the permease NanT. Since sialic acid is an expensive compound, a more economical process has now been developed by genetically engineering E. coli K12 to be capable of generating CMP-Neu5Ac using its own internal metabolism. Mutant strains devoid of Neu5Ac aldolase and of ManNAc kinase were shown to efficiently produce 3'sialyllactose by coexpressing the alpha-2,3-sialyltransferase gene from Neisseria meningitidis with the neuC, neuB and neuACampylobacter jejuni genes encoding N-acetylglucosamine-6-phosphate-epimerase, sialic acid synthase and CMP-Neu5Ac synthetase, respectively. A sialyllactose concentration of 25 g l(-1) was obtained in long-term high cell density culture with a continuous lactose feed. This high concentration and low cost of fermentation medium should make possible to use sialylated oligosaccharides in new fields such as the food industry.  相似文献   

16.
The gene encoding cyclohexadienyl dehydratase (denoted pheC) was cloned from Pseudomonas aeruginosa by functional complementation of a pheA auxotroph of Escherichia coli. The gene was highly expressed in E. coli due to the use of the high-copy number vector pUC18. The P. aeruginosa cyclohexadienyl dehydratase expressed in E. coli was purified to electrophoretic homogeneity. The latter enzyme exhibited identical physical and biochemical properties as those obtained for cyclohexadienyl dehydratase purified from P. aeruginosa. The activity ratios of prephenate dehydratase to arogenate dehydratase remained constant (about 3.3-fold) throughout purification, thus demonstrating a single protein having broad substrate specificity. The cyclohexadienyl dehydratase exhibited Km values of 0.42 mM for prephenate and 0.22 mM for L-arogenate, respectively. The pheC gene was 807 base pairs in length, encoding a protein with a calculated molecular mass of 30,480 daltons. This compares with a molecular mass value of 29.5 kDa determined for the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since the native molecular mass determined by gel filtration was 72 kDa, the enzyme probably is a homodimer. Comparison of the deduced amino acid sequence of pheC from P. aeruginosa with those of the prephenate dehydratases of Corynebacterium glutamicum, Bacillus subtilis, E. coli, and Pseudomonas stutzeri by standard pairwise alignments did not establish obvious homology. However, a more detailed analysis revealed a conserved motif (containing a threonine residue known to be essential for catalysis) that was shared by all of the dehydratase proteins.  相似文献   

17.
A cDNA of the mouse homologue of Escherichia coli N-acetylneuraminic acid (Neu5Ac) synthase (neuB gene product) was cloned by the PCR-based method. The mouse homologue consists of 359 amino acids, and the cDNA sequence displays 33% identity to that of the E. coli Neu5Ac synthase. The recombinant mouse homologue which is transiently expressed in HeLa cells does not exhibit the Neu5Ac synthase activity, which catalyzes condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc) to synthesize Neu5Ac, but the Neu5Ac 9-phosphate (Neu5Ac-9-P) synthase activity, which catalyzes condensation of PEP and ManNAc 6-phosphate (ManNAc-6-P) to synthesize Neu5Ac-9-P. Thus, the mouse homologue of E. coli Neu5Ac synthase is the Neu5Ac-9-P synthase. The Neu5Ac-9-P synthase is a cytosolic enzyme and ubiquitously distributed in mouse various tissues. Notably, the Neu5Ac-9-P synthase can not catalyze the synthesis of deaminoneuraminic acid (KDN) or KDN-9-P from PEP and Man or ManNAc-6-P, thus suggesting that the enzyme is not involved in the synthesis of KDN. This is consistent with the previous observation that only a very low activity to synthesize KDN is found in mouse B16 cells [Angata, T., et al. (1999) Biochem. Biophys. Res. Commun. 261, 326-331].  相似文献   

18.
During previous work on deriving inosine-producing mutants of Escherichia coli, we observed that an excess of adenine added to the culture medium was quickly converted to hypoxanthine. This phenomenon was still apparent after disruption of the known adenosine deaminase gene (add) on the E. coli chromosome, suggesting that, like Bacillus subtilis, E. coli has an adenine deaminase. As the yicP gene of E. coli shares about 35% identity with the B. subtilis adenine deaminase gene (ade), we cloned yicP from the E. coli genome and developed a strain that overexpressed its product. The enzyme was purified from a cell extract of E. coli harboring a plasmid containing the cloned yicP gene, and had significant adenine deaminase [EC 3.5.4.2] activity. It was deduced to be a homodimer, each subunit having a molecular mass of 60 kDa. The enzyme required manganese ions as a cofactor, and adenine was its only substrate. Its optimum pH was 6.5-7.0 and its optimum temperature was 60°C. The apparent Km for adenine was 0.8 mM.  相似文献   

19.
Adenine deaminase activity of the yicP gene product of Escherichia coli.   总被引:1,自引:0,他引:1  
During previous work on deriving inosine-producing mutants of Escherichia coli, we observed that an excess of adenine added to the culture medium was quickly converted to hypoxanthine. This phenomenon was still apparent after disruption of the known adenosine deaminase gene (add) on the E. coli chromosome, suggesting that, like Bacillus subtilis, E. coli has an adenine deaminase. As the yicP gene of E. coli shares about 35% identity with the B. subtilis adenine deaminase gene (ade), we cloned yicP from the E. coli genome and developed a strain that overexpressed its product. The enzyme was purified from a cell extract of E. coli harboring a plasmid containing the cloned yicP gene, and had significant adenine deaminase [EC 3.5.4.2] activity. It was deduced to be a homodimer, each subunit having a molecular mass of 60 kDa. The enzyme required manganese ions as a cofactor, and adenine was its only substrate. Its optimum pH was 6.5-7.0 and its optimum temperature was 60 degrees C. The apparent Km for adenine was 0.8 mM.  相似文献   

20.
Z Ge  D E Taylor 《Journal of bacteriology》1997,179(16):4970-4976
The Helicobacter pylori pss gene, coding for phosphatidylserine synthase (PSS), was cloned and sequenced in this study. A polypeptide of 237 amino acids was deduced from the PSS sequence. H. pylori PSS exhibits significant amino acid sequence identity with the PSS proteins found in the archaebacterium Methanococcus jannaschii, the gram-positive bacterium Bacillus subtilis, and the yeast Saccharomyces cerevisiae but none with its Escherichia coli counterpart. Expression of the putative pss gene in maxicells gave rise to a product of approximately 26 kDa, which is in agreement with the predicted molecular mass of 26,617 Da. A manganese-dependent PSS activity was found in the membrane fractions of the E. coli cells overexpressing the H. pylori pss gene product. This result indicates that this enzyme is a membrane-bound protein, a conclusion which is supported by the fact that the PSS protein contains several local hydrophobic segments which could form transmembrane helices. The pss gene was inactivated with a chloramphenicol acetyltransferase cassette on the plasmid. However, an isogenic pss gene-disrupted mutant of H. pylori UA802 could not be obtained, suggesting that this enzyme plays an essential role in the growth of this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号