首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse myeloma cells secreting 19S IgM (immunoglobulin M) (MOPC 104E and TEPC 183) or monomer and polymer IgA (immunoglobulin A) (MOPC 315) were incubated with radioactive leucine and the intracellular and secreted immunoglobulins and immunoglobulin subunits were prepared by preparative sucrose-density-gradient centrifugation. Samples were reduced in the presence or absence of isolated J chain, passed over Sephadex G-25 and then incubated at 37 degrees C for 30min with or without a source of disulphide-interchange enzyme. The extent of reassembly of reduced subunits was then evaluated by electrophoresis in polyacrylamide gels. Provided that J chain and the disulphide-interchange enzyme were supplied, both IgM and IgA could be assembled from their respective subunits, obtained by reductive cleavage of polymeric forms. Under similar conditions, assembly of polymeric forms from intracellular or secreted 7S monomer subunits also occurred. Under these conditions polymerization was total, there being no residue of the monomeric form. Reassembly did not occur in the absence of either J chain or the enzyme. All of the J chain released from IgM by reductive cleavage was incorporated back into the reassembled polymer. The J chain is therefore likely to be an essential structural requirement for polymeric immunoglobulins. A variety of controls ruled out non-specific interactions, and further suggested that the amino acid sequence of polypeptide chains determines the specificity of polymerization. The fact that intracellular IgA and IgM monomer subunits known to be deficient in galactose and fucose can be completely polymerized suggests that the addition of carbohydrate does not control polymerization.  相似文献   

2.
A disulfide-interchange enzyme from rat liver microsomes was found to promote binding in vitro of human free secretory component (SC) to dimeric serum-type IgA containing J chain, as assessed by immune precipitation and gel filtration. This effect was greater withe native than with partially reduced SC. Most of the bound SC was covalently linked, as determined by electrophoresis in polyacrylamide gels in detergent. The enzyme did not promote binding of native or partially reduce SC to IgG, IgA monomer, IgA dimer without J chain, or IgM. In the case of IgM, the enzyme did, however, promote covalent bonding of previously non-covalently linked SC. The results overall suggest that a disulfide-interchange enzyme could play a role in vivo in the cell-associated assembly of secretory IgA by promoting the covalent attachment of SC to a dimer of serum-type IgA and that the J chain in the IgA dimer contributes to the enzyme effect.  相似文献   

3.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

4.
Role of disulfide interchange enzyme in immunoglobulin synthesis   总被引:11,自引:0,他引:11  
R A Roth  M E Koshland 《Biochemistry》1981,20(23):6594-6599
The role of disulfide interchange enzyme in protein biosynthesis was evaluated by studying the enzyme from mouse lymphoid tissue. The enzyme isolated from lymphoid cells was shown to have no tissue-specific characteristics. It was identical with the enzyme synthesized by mouse liver in its biochemical and immunological properties and its capacity to promote both disulfide bond formation and insulin degradation. In contrast to liver, the levels of enzyme in lymphoid tissues were found to vary with immunoglobulin secretory activity, Assays of lymphoid cells and their transformed counterparts showed that the enzyme contents of cells actively secreting immunoglobulin were 1-2 orders of magnitude higher than that of unstimulated B cells or non-immunoglobulin-producing T cells. The increase in enzyme levels paralleled the increase in immunoglobulin synthesis after antigen or mitogen stimulation and was independent of the class of immunoglobulin produced. This correlation indicated that the enzyme plays a critical role in the formation of intramonomer bonds common to all immunoglobulin molecules. Supporting data were obtained by assaying the ability of the enzyme to promote the polymerization of mouse pentamer IgM in vitro. The enzyme was found to catalyze the formation of the interchain bonds required for monomer IgM assembly but not the formation of the intermonomer bonds required for pentamer assembly. The sum of these results provides strong evidence that disulfide interchange enzyme functions in the in vivo synthesis protein disulfide bonds.  相似文献   

5.
J chain is covalently bound to both monomer subunits in human secretory IgA   总被引:4,自引:0,他引:4  
Previous work has established that the secretory component (SC) in human secretory IgA is covalently linked to only one of the two IgA monomer subunits, but it has not been clear whether the J chain is covalently linked to one or to both of these subunits. In view of the asymmetry in the disulfide bonding between SC and the IgA subunits, an arrangement which follows disulfide interchange, several models for the disulfide linkage of J chain and the bonds between IgA subunits were envisaged and investigated. When sIgA was gel filtered through Sephadex G-200 in acetic acid, a single major symmetrical peak eluted at the front. This material contained SC, alpha and L chains, and all of the J chain. The greater resolution afforded by polyacrylamide gel electrophoresis in detergent confirmed that human sIgA contains no major noncovalently linked components in the 150,000-200,000 molecular weight range. In another series of experiments the Fc monomer, which is not covalently attached to SC, isolated after treatment of sIgA with IgA protease and cyanogen bromide, was investigated to learn whether alpha chain COOH-terminal octapeptides could be released by reduction. The results were negative. The available data thus favor a model in which J chain is disulfide-bonded to both IgA monomer subunits in sIgA.  相似文献   

6.
The conventional model of polymeric IgM depicts a unique structure in which the mu heavy chains and J chain are joined by well defined disulfide bonds involving cysteine residues at positions 337, 414 and 575 of the mu chain. To test this model, we have used site directed mutagenesis to produce IgM in which these cysteines have been replaced by serine. In each case the single mutants were able to assemble polymeric IgM, which was analyzed for its size, morphology, J chain content and activity in complement dependent cytolysis. Whereas normal polymeric IgM is composed predominantly of pentameric and hexameric molecules, the mutant IgM-Ser414 is covalently assembled as pentamers and smaller forms; IgM-Ser575 is assembled as covalent hexamers. IgM-Ser337 appears to include the same pentameric and hexameric forms as normal IgM except that, unlike normal polymeric IgM, most pentameric/hexameric IgM-Ser337 is not covalently assembled. J chain is present in polymeric IgM-Ser337 but absent in polymeric IgM-Ser414 and IgM-Ser575. IgM-Ser414 is defective in activating the classical pathway of complement dependent cytolysis. Our observations are consistent with models in which the covalent linkages between mu chains are mediated by disulfide bonded Cys337-Cys337, Cys414-Cys414 and Cys575-Cys575 but indicate that the arrangement of these Cys-Cys pairs in series and in parallel varies among and within IgM molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To clarify the losses that have been observed in the J chain portion of human IgM and IgA, were carried out studies on the enzymatic susceptibility of the J polypeptide. When Waldenstr?m macroglobulins and myeloma IgA polymers were subjected to limited proteolysis with various endopeptidases, only subtilisin was found to attack the J chain component. The pattern of cleavage was a function of the polymer species. The J chain in IgM was highly susceptible to digestion, quantitative cleavage being achieved at very low enzyme to IgM ratios and without significant changes in the remaining pentamer structure. Analyses of the digestion products showed that the initial cleavage occurred at an exposed region midway in the J sequence and was followed by extensive degradation of the carboxy-terminal segment. These findings indicated that the observed loss of the IgM J component can be explained by the inadvertent introduction of subtilisin in vitro or by the attack of in vivo enzymes with a specificity similar to subtilisin. In contrast, the IgA J chain was found to be much more resistant to subtilisin proteolysis; its cleavage required higher enzyme concentrations and was accompanied by significant degradation of the alpha-chains. Thus, it appears unlikely that the IgA J polypeptide is degraded by either in vitro or in vivo enzymes unless its accessibility is first enhanced by changes in the IgA Fc structure.  相似文献   

8.
IgM is secreted in two functional polymeric forms. Secreted IgM was originally thought to be exclusively a pentameric molecule containing J (joining) chain, but many B cells also secrete hexameric IgM lacking J chain. Hexameric IgM may play an important role in the immune system, since it is up to 20 times more active than pentameric IgM in initiating the complement cascade. The predominant polymeric form of IgM secreted by B cell lines, either pentameric or hexameric, correlates with the concentration of J chain present during polymerization, and cells that express high levels of J chain secrete mostly IgM pentamers. The B cell lymphoma WEHI-231 does not express J chain, and the majority of its secreted IgM is polymerized as hexamers. When a J chain-encoding cDNA was expressed in these cells, the secreted IgM was found to be almost exclusively pentameric. However, although the expression of J chain dramatically altered the phenotype of the IgM secreted by these cells, it had little effect on their secretory rate. We conclude that J chain regulates the structure and function of the IgM polymers secreted by B cells, but it is not necessary for either IgM polymerization or secretion.  相似文献   

9.
Cell suspensions of mouse plasma-cell tumours secreting IgA (immunoglobulin A) and IgM (immunoglobulin M) were incubated with radioactive leucine for various periods of time. The secreted immunoglobulins were precipitated from the culture medium with specific rabbit antisera to determine the relative distribution of radioactivity among the different molecular species, and to estimate the fraction of total radioactivity in the J chain. For IgM-secreting cells there is a balanced synthesis of 7S subunits and J chains, and the secreted product is uniformly assembled to the pentamer. In cells secreting IgA, however, the results demonstrate that the pool of intracellular J chain is less than the intracellular IgA pool. The concentration of J chain is therefore limiting and is less than the requirement for complete polymerization. The major factor that determines whether an intracellular monomer is secreted as such or is polymerized with the addition of J chain is therefore the amount of intracellular J chain. When this is limiting, as it is in cells secreting IgA, then monomer will be secreted.  相似文献   

10.
Selective reduction of seminal ribonuclease by glutathione   总被引:1,自引:0,他引:1  
Incubation of seminal ribonuclease with glutathione leads to the formation of a monomeric species which exhibits twice the specific activity of the native dimer. The monomer was found to possess two mixed disulfides of glutathione at residues 31 and 32, the residues ordinarily involved in the intermolecular disulfide bonds linking the subunits of the native dimer. Formation of the monomer results in only minor changes in the far ultraviolet circular dichroism spectra. The rate of the glutathione-facilitated dissociation reaction is fairly slow, requiring 60 min for completion. Attempts to dimerize the monomer all failed, implying that the dissociation reaction is irreversible. The glutathione reduced monomer was compared with the monomer formed during the regeneration of reduced, denatured bovine seminal ribonuclease in the presence of glutathione. By all criteria examined, the two monomeric forms are identical. It is concluded that the mixed disulfide monomer is the favored form of the enzyme in the presence of glutathione.  相似文献   

11.
The facile modulation of biological processes is an important goal of biological chemists. Here, a general strategy is presented for controlling the catalytic activity of an enzyme. This strategy is demonstrated with ribonuclease A (RNase A), which catalyzes the cleavage of RNA. The side-chain amino group of Lys41 donates a hydrogen bond to a nonbridging oxygen in the transition state for RNA cleavage. Replacing Lys41 with a cysteine residue is known to decrease the value of k(cat)/K(m) by 10(5)-fold. Forming a mixed disulfide between the side chain of Cys41 of K41C RNase A and cysteamine replaces the amino group and increases k(cat)/K(m) by 10(3)-fold. This enzyme, which contains a mixed disulfide, is readily deactivated by dithiothreitol. Forming a mixed disulfide between the side chain of Cys41 and mercaptopropyl phosphate, which is designed to place a phosphoryl group in the active site, decreases activity by an additional 25-fold. This enzyme, which also contains a mixed disulfide, is reactivated in the presence of dithiothreitol and inorganic phosphate (which displaces the pendant phosphoryl group from the active site). An analogous control mechanism could be installed into the active site of virtually any enzyme by replacing an essential residue with a cysteine and elaborating the side chain of that cysteine into appropriate mixed disulfides.  相似文献   

12.
Carboxyamidomethylated J chain was shown to be an excellent substrate for the enzyme, pyrollidone carboxylyl peptidase, which specifically removed the cyclized amino terminal glutamyl residue. J chain lacking the “blocked” PCA group was subjected to automated Edman degradation and the amino terminal amino acid sequence determined as: PCA-Glu-Asp-Glu-Arg-Ile-Val-Leu-Val-Asp-Asn-Lys-CMCys-Lys-CMCys-Ala-Arg. Previous studies by others have identified a disulfide bridge between the heavy chain of immunoglobulins and a tripeptide identical in composition with the sequence at positions 15–17 in the J chain. These two sets of data locate the linkage of immunoglobulin heavy chain with Cys 15 of the J chain.  相似文献   

13.
Mutations of the mouse mu H chain which prevent polymer assembly   总被引:1,自引:0,他引:1  
Earlier work has shown that truncated mu-chains lacking the carboxy-terminal C mu 4-tail region are secreted as monomeric rather than polymeric IgM and that the monomer phenotype is not due to the lack of a disulfide bond at Cys-575 in the tail. In order to define with greater precision, the molecular requirements for IgM polymer assembly, we have isolated several mutant hybridomas which produce monomeric IgM. For three such mutants, we synthesized cDNA clones of their mu mRNA and identified a mutation in the mu-chain which was responsible for the failure to assemble polymers. Mutant 205 has a 2-bp deletion which results in a termination codon after amino acid 556, effectively deleting the last 20 amino acids of the mu-chain. In conjunction with earlier reports, this result shows that the tail plays some role in assembly other than providing Cys-575, the penultimate amino acid, for disulfide bond formation. Both mutant 21 and mutant 201 have an A to G transition, which results in Tyr-455 in the fourth constant domain being replaced by a cysteine. We conclude that the integrity of both the C mu 4 domain and the 19 amino acid tail are required for the mu H chain to be assembled into polymeric IgM.  相似文献   

14.
Localization of a fibrin polymerization site   总被引:6,自引:0,他引:6  
The formation of a fibrin clot is initiated after the proteolytic cleavage of fibrinogen by thrombin. The enzyme removes fibrinopeptides A and B and generates fibrin monomer which spontaneously polymerizes. Polymerization appears to occur though the interaction of complementary binding sites on the NH2-terminal and COOH-terminal (Fragment D) regions of the molecule. A peptide has been isolated from the gamma chain remnant of fibrinogen Fragment D1 which has the ability to bind to the NH2-terminal region of fibrinogen as well as to inhibit fibrin monomer polymerization. The peptide reduces the maximum rate and extent of the polymerization of thrombin or batroxobin fibrin monomer and increases the lag time. The D1 peptide does not interact with disulfide knot, fibrinogen, or Fragment D1, but it binds to thrombin-treated disulfide knot with a Kd of 1.45 X 10(-6) M at approximately two binding sites per molecule of disulfide knot. Fibrin monomer formed either by thrombin or batroxobin binds approximately two molecules of D1 peptide per molecule of fibrin monomer, indicating that the complementary site is revealed by the loss of fibrinopeptide A. The NH2-terminal sequence (Thr-Arg-Trp) and COOH-terminal sequence (Ala-Gly-Asp-Val) of the D1 peptide were determined. Therefore the gamma 373-410 region of fibrinogen contains a polymerization site which is complementary to the thrombin-activated site on the NH2-terminal region of fibrinogen.  相似文献   

15.
Thioredoxin reductase (TrxR) catalyzes the reduction of thioredoxin by NADPH. TrxR from Plasmodium falciparum (PfTrxR) is a homodimer with a subunit Mr of 59 000. Each monomer contains one FAD and one redox active disulfide. Despite the high degress of similarity between PfTrxR and the human TrxR, their primary structures present a striking difference in the C-terminus. PfTrxR has two cysteine residues near the C-terminal Gly, while the human TrxR contains a Cys-SeCys dipeptide penultimate to the C-terminal Gly. It has been proposed that the C-terminal cysteines (as a cystine) of PfTrxR are involved in catalysis by an intramolecular dithiol-disulfide interchange with the nascent redox active dithiol. To investigate the proposed function of the C-terminal cysteines of PfTrxR, each has been changed to an alanine [Gilberger, T.-M., Bergmann, B., Walter, R. D., and Müller, S. (1998) FEBS Lett. 425, 407-410]. The single C-terminal cysteine remaining in each mutant was modified with 5,5'-dithiobis(2-nitrobenzoic acid) to form mixed disulfides consisting of the enzyme thiol and thionitrobenzoate (TNB). In reductive titrations of these mixed disulfide enzymes, 1 equiv of TNB anion was released upon reduction of the enzyme itself, while control experiments in which mutants without C-terminal cysteine were used showed little TNB anion release. This suggests that each of the C-terminal cysteines as a TNB mixed disulfide does mimic the proposed electron acceptor in the C-terminus. Analysis of the rapid reaction kinetics showed that the C-terminal mixed disulfide of the modified enzyme is reduced at a rate which is comparable with the turnover number of the wild type enzyme.  相似文献   

16.
Chicken liver fatty acid synthase is rapidly inactivated and cross-linked at pH 7.2 and 8.0 by incubation with low concentrations of common biological disulfides including glutathione disulfide, coenzyme A disulfide, and glutathione-coenzyme A-mixed disulfide. Glutathione disulfide inactivation of the enzyme is accompanied by the oxidation of a total of 4-5 enzyme thiols per monomer. Only one glutathione equivalent is incorporated per monomer as a protein-mixed disulfide, and its rate of incorporation is significantly slower than the rate of inactivation. The formation of protein-SS-protein disulfides results in significant cross-linking of enzyme subunits. The inactive enzyme is rapidly and completely reactivated, and the cross-linking is completely reversed by incubation of the enzyme with thiols (10-20 mM) including dithiothreitol, mercaptoethanol, and glutathione. In a glutathione redox buffer (GSH + GSSG), disulfide bond formation comes to equilibrium. The enzyme activity at equilibrium is dependent both on the ratio of glutathione to glutathione disulfide and on the total glutathione concentration. The equilibrium constant for the redox equilibration of fatty acid synthase in a glutathione redox buffer is 15 mM (Ered + GSSG in equilibrium Eox + 2GSH). The formation of at least one protein-protein disulfide per monomer dominates the redox properties of the enzyme while the formation of one protein-mixed disulfide with glutathione (Kmixed = 0.45) has little effect on activity. The oxidation equilibrium constant suggests that there would be no significant cycling between the reduced and the oxidized enzyme in response to likely physiological variations in the hepatic glutathione status. The possibility that changes in the concentration of cellular glutathione may act as a mechanism for metabolic control of other enzymes is discussed.  相似文献   

17.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

18.
J E Mole  A S Bhown  J C Bennett 《Biochemistry》1977,16(16):3507-3513
The primary structure of the J chain from a human Waldenstr?ms IgM protein has been determined using a combination of automated and conventional Edman degradative procedures. Eighty-five percent of the sequence was established with peptides isolated from tryptic digests of carboxyamidomethylated and citraconylated J chain, many of which were sequenced completely. Alignment of the tryptic fragments was achieved with peptides generated by chymotrypsin and limited acid hydrolyses. The j chain consits of 129 amino acids and a single oligosaccharide structure linked to asparagine at positon 43 of the sequence. The molecular weight, including 7.5% carbohydrate by weight, is 16 422. The location and arrangement of three half-cystines could be deduced from previous studies, whereas the pairing of the remaining five disulfide bonds still needs to be clarified.  相似文献   

19.
Human IgM molecules were treated with Na(2)SO(3) or mercaptoethylamine in concentrations ranging from 2 to 14mm or 2 to 22mm respectively. The dissociation of IgM to IgM(s) varied from 0% to 100%. At the intermediate concentrations of either reagent the amount of freed J chains was less than expected. In an attempt to find an explanation for this, IgM was partially dissociated to IgM(s) with mercaptoethylamine. The IgM(s) isolated by gel filtration was divided according to the ascending and descending portions of the elution curve. These portions were treated with 24mm-mercaptoethylamine and analysed for the presence of J chains. Only the ascending portion contained free J chains. Thus, after mild reduction where not all the IgM molecules are dissociated to IgM(s), some J chains remain covalently attached to some IgM(s) molecules although most of the J chains are freed. It was concluded that the J chain could serve as a ;hitch' for IgM(s) molecules forming intact IgM.  相似文献   

20.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号