首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal transamidase complex that executes glycosylphosphatidylinositol (GPI) lipid anchoring of precursor proteins has overlapping but distinct sequence specificity compared with the animal system. Therefore, a taxon-specific prediction tool for the recognition of the C-terminal signal in fungal sequences is necessary. We have collected a learning set of fungal precursor protein sequences from the literature and fungal proteomes. Although the general four segment scheme of the recognition signal is maintained also in fungal precursors, there are taxon specificities in details. A fungal big-Pi predictor has been developed for the assessment of query sequence concordance with fungi-specific recognition signal requirements. The sensitivity of this predictor is close to 90%. The rate of false positive prediction is in the range of 0.1%. The fungal big-Pi tool successfully predicts the Gas1 mutation series described by C. Nuoffer and co-workers, and recognizes that the human PLAP C terminus is not a target for the fungal transamidase complex. Lists of potentially GPI lipid anchored proteins for five fungal proteomes have been generated and the hits have been functionally classified. The fungal big-Pi prediction WWW server as well as precursor lists are available at  相似文献   

2.
Many posttranslational modifications (N-myristoylation or glycosylphosphatidylinositol (GPI) lipid anchoring) and localization signals (the peroxisomal targeting signal PTS1) are encoded in short, partly compositionally biased regions at the N- or C-terminus of the protein sequence. These sequence signals are not well defined in terms of amino acid type preferences but they have significant interpositional correlations. Although the number of verified protein examples is small, the quantification of several physical conditions necessary for productive protein binding with the enzyme complexes executing the respective transformations can lead to predictors that recognize the signals from the amino acid sequence of queries alone. Taxon-specific prediction functions are required due to the divergent evolution of the active complexes. The big-Pi tool for the prediction of the C-terminal signal for GPI lipid anchor attachment is available for metazoan, protozoan and plant sequences. The myristoyl transferase (NMT) predictor recognizes glycine N-myristoylation sites (at the N-terminus and for fragments after processing) of higher eukaryotes (including their viruses) and fungi. The PTS1 signal predictor finds proteins with a C-terminus appropriate for peroxisomal import (for metazoa and fungi). Guidelines for application of the three WWW-based predictors (http://mendel.imp.univie.ac.at/) and for the interpretation of their output are described.  相似文献   

3.
Prediction of potential GPI-modification sites in proprotein sequences.   总被引:22,自引:0,他引:22  
Glycosylphosphatidylinositol (GPI) lipid anchoring is a common posttranslational modification known mainly from extracellular eukaryotic proteins. Attachment of the GPI moiety to the carboxyl terminus (omega-site) of the polypeptide follows after proteolytic cleavage of a C-terminal propeptide. For the first time, a new prediction technique locating potential GPI-modification sites in precursor sequences has been applied for large-scale protein sequence database searches. The composite prediction function (with separate parametrisation for metazoan and protozoan proteins) consists of terms evaluating both amino acid type preferences at sequence positions near a supposed omega-site as well as the concordance with general physical properties encoded in multi-residue correlation within the motif sequence. The latter terms are especially successful in rejecting non-appropriate sequences from consideration. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set of fully annotated sequences from the SWISS-PROT database as well as with a newly created database "big-Pi" (more than 300 GPI-motif mutations extracted from original literature sources). The accuracy of predicting the effect of mutations in the GPI sequence motif was above 83 %. Lists of potential precursor proteins which are non-annotated in SWISS-PROT and SPTrEMBL are presented on the WWW-page http://www.embl-heidelberg.de/beisenha/gpi/gpi_p rediction. html The algorithm has been implemented in the prototype software "big-Pi predictor" which may find application as a genome annotation and target selection tool.  相似文献   

4.
Anchoring of proteins to membranes by glycosylphosphatidylinositols (GPIs) is ubiquitous among all eukaryotes and heavily used by parasitic protozoa. GPI is synthesized and transferred en bloc to form GPI- anchored proteins. The key enzyme in this process is a putative GPI:protein transamidase that would cleave a peptide bond near the COOH terminus of the protein and attach the GPI by an amide linkage. We have identified a gene, GAA1, encoding an essential ER protein required for GPI anchoring. gaal mutant cells synthesize the complete GPI anchor precursor at nonpermissive temperatures, but do not attach it to proteins. Overexpression of GAA1 improves the ability of cells to attach anchors to a GPI-anchored protein with a mutant anchor attachment site. Therefore, Gaa1p is required for a terminal step of GPI anchor attachment and could be part of the putative GPI:protein transamidase.  相似文献   

5.
To investigate the occurrence of glycosylphosphatidylinositol (GPI) lipid anchor modification in various taxonomic ranges, potential substrate proteins have been searched for in completely sequenced genomes. We applied the big-pi predictor for the recognition of propeptide cleavage and anchor attachment sites with a new, generalized analytical form of the extreme-value distribution for evaluating false-positive prediction rates. (i) We find that GPI modification is present among lower and higher Eukaryota (approximately 0.5% of all proteins) but it seems absent in all eubacterial and three archaeobacterial species studied. Four other archaean genomes appear to encode such a fraction of substrate proteins (in the range of eukaryots) that they cannot be explained as false-positive predictions. This result supports the possible existence of GPI anchor modification in an archaean subgroup. (ii) The frequency of GPI-modified proteins on various chromosomes of a given eukaryotic species is different. (iii) Lists of potentially GPI-modified proteins in complete genomes with their predicted cleavage sites are available at http://mendel.imp.univie.ac.at/gpi/gpi_genomes.html. (iv) Orthologues of known transamidase subunits have been found only for EUKARYA: Inconsistencies in domain structure among homologues some of which may indicate sequencing errors are described. We present a refined model of the transamidase complex.  相似文献   

6.
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.

The inositol deacylase AtPGAP1 mediates the first step of glycosylphosphatidylinositol (GPI) anchor-lipid remodeling and is required for efficient transport of GPI-anchored proteins  相似文献   

7.
8.
GPI lipid anchoring is an important post-translational modification of eukaryote proteins in the endoplasmic reticulum. In total, 19 genes have been directly implicated in the anchor synthesis and the substrate protein modification pathway. Here, the molecular functions of the respective proteins and their evolution are analyzed in the context of reported literature data and sequence analysis studies for the complete pathway (http://mendel.imp.univie.ac.at/SEQUENCES/gpi-biosynthesis/) and questions for future experimental investigation are discussed. Studies of two of these proteins have provided new mechanistic insights. The cytosolic part of PIG-A/GPI3 has a two-domain alpha/beta/alpha-layered structure; it is suggested that its C-terminal subsegment binds UDP-GlcNAc whereas the N-terminal domain interacts with the phosphatidylinositol moiety. The lumenal part of PIG-T/GPI16 apparently consists of a beta-propeller with a central hole that regulates the access of substrate protein C termini to the active site of the cysteine protease PIG-K/GPI8 (gating mechanism) as well as of a polypeptide hook that embraces PIG-K/GPI8. This structural proposal would explain the paradoxical properties of the GPI lipid anchor signal motif and of PIG-K/GPI8 orthologs without membrane insertion regions in some species.  相似文献   

9.
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.  相似文献   

10.
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins occurs by a transamidase-catalyzed reaction mechanism soon after completion of polypeptide synthesis and translocation. We show that placental alkaline phosphatase becomes efficiently GPI-anchored when translated in the presence of semipermeabilized K562 cells but is not GPI-anchored in cell lines defective in the transamidase subunit hGpi8p. By studying the synthesis of placental alkaline phosphatase, we demonstrate that folding of the protein is not influenced by the addition of a GPI anchor and conversely that GPI anchor addition does not require protein folding. These results demonstrate that folding of the ectodomain and GPI addition are two distinct processes and can be mutually exclusive. When GPI addition is prevented, either by synthesis of the protein in the presence of cell lines defective in GPI addition or by mutation of the GPI carboxyl-terminal signal sequence cleavage site, the substrate forms a prolonged association with the transamidase subunit hGpi8p. The ability of the transamidase to recognize and associate with GPI anchor signal sequences provides an explanation for the retention of GPI-anchored protein within the ER in the absence of GPI anchor addition.  相似文献   

11.
In eukaryotes, GPI (glycosylphosphatidylinositol) lipid anchoring of proteins is an abundant post-translational modification. The attachment of the GPI anchor is mediated by GPI-T (GPI transamidase), a multimeric, membrane-bound enzyme located in the ER (endoplasmic reticulum). Upon modification, GPI-anchored proteins enter the secretory pathway and ultimately become tethered to the cell surface by association with the plasma membrane and, in yeast, by covalent attachment to the outer glucan layer. This work demonstrates a novel in vivo assay for GPI-T. Saccharomyces cerevisiae INV (invertase), a soluble secreted protein, was converted into a substrate for GPI-T by appending the C-terminal 21 amino acid GPI-T signal sequence from the S. cerevisiae Yapsin 2 [Mkc7p (Y21)] on to the C-terminus of INV. Using a colorimetric assay and biochemical partitioning, extracellular presentation of GPI-anchored INV was shown. Two human GPI-T signal sequences were also tested and each showed diminished extracellular INV activity, consistent with lower levels of GPI anchoring and species specificity. Human/fungal chimaeric signal sequences identified a small region of five amino acids that was predominantly responsible for this species specificity.  相似文献   

12.
Ohishi K  Inoue N  Kinoshita T 《The EMBO journal》2001,20(15):4088-4098
Many eukaryotic cell surface proteins are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The GPI transamidase mediates GPI anchoring in the endoplasmic reticulum, by replacing a protein's C-terminal GPI attachment signal peptide with a pre-assembled GPI. During this transamidation reaction, the GPI transamidase forms a carbonyl intermediate with a substrate protein. It was known that the GPI transamidase is a complex containing GAA1 and GPI8. Here, we report two new components of this enzyme: PIG-S and PIG-T. To determine roles for PIG-S and PIG-T, we disrupted these genes in mouse F9 cells by homologous recombination. PIG-S and PIG-T knockout cells were defective in transfer of GPI to proteins, particularly in formation of the carbonyl intermediates. We also demonstrate that PIG-S and PIG-T form a protein complex with GAA1 and GPI8, and that PIG-T maintains the complex by stabilizing the expression of GAA1 and GPI8. Saccharomyces cerevisiae Gpi16p (YHR188C) and Gpi17p (YDR434W) are orthologues of PIG-T and PIG-S, respectively.  相似文献   

13.
Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.

Severely misfolded proteins carrying a glycosylphosphatidylinositol (GPI)-anchor attachment sequence undergo a stringent quality control process in the endoplasmic reticulum that prevents GPI anchoring.  相似文献   

14.
Gpi8p and Gaa1p are essential components of the GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. After solubilization in 1.5% digitonin and separation by blue native PAGE, Gpi8p is found in 430-650-kDa protein complexes. These complexes can be affinity purified and are shown to consist of Gaa1p, Gpi8p, and Gpi16p (YHR188c). Gpi16p is an essential N-glycosylated transmembrane glycoprotein. Its bulk resides on the lumenal side of the ER, and it has a single C-terminal transmembrane domain and a small C-terminal, cytosolic extension with an ER retrieval motif. Depletion of Gpi16p results in the accumulation of the complete GPI lipid CP2 and of unprocessed GPI precursor proteins. Gpi8p and Gpi16p are unstable if either of them is removed by depletion. Similarly, when Gpi8p is overexpressed, it largely remains outside the 430-650-kDa transamidase complex and is unstable. Overexpression of Gpi8p cannot compensate for the lack of Gpi16p. Homologues of Gpi16p are found in all eucaryotes. The transamidase complex is not associated with the Sec61p complex and oligosaccharyltransferase complex required for ER insertion and N-glycosylation of GPI proteins, respectively. When GPI precursor proteins or GPI lipids are depleted, the transamidase complex remains intact.  相似文献   

15.
Glycosyl phosphatidylinositols (GPIs) are usedto anchor many proteins to the cell surface membrane and are utilizedin all eukaryotic cells. GPI anchoring units are attached to proteins via a transamidase reaction mediated by a GPI transamidase complex. Weisolated one of the components of this complex,mGPAA1 (murine GPI anchor attachment), by the signalsequence trap method. mGPAA1 cDNA is about 2 kb in lengthand encodes a putative 621 amino acid protein. The mGPAA1gene has 12 small exons and 11 small introns. mGPAA1 mRNA isubiquitously expressed in mammalian cells, and in situ hybridizationanalysis revealed that it is abundant in the choroid plexus, skeletalmuscle, osteoblasts of rib, and occipital bone in mouse embryos. Itsexpression levels and transamidation efficiency decreased withdifferentiation of embryonic stem cells. The 3T3 cell lines expressingantisense mGPAA1 failed to express GPI-anchored proteins onthe cell surface membrane.

  相似文献   

16.
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.  相似文献   

17.
Distant homology relationships among proteins with many transmembrane regions (TMs) are difficult to detect as they are clouded by the TMs’ hydrophobic compositional bias and mutational divergence in connecting loops. In the case of several GPI lipid anchor biosynthesis pathway components, the hidden evolutionary signal can be revealed with dissectHMMER, a sequence similarity search tool focusing on fold-critical, high complexity sequence segments. We find that a sequence module with 10 TMs in PIG-W, described as acyl transferase, is homologous to PIG-U, a transamidase subunit without characterized molecular function, and to mannosyltransferases PIG-B, PIG-M, PIG-V and PIG-Z. We conclude that this new, membrane-embedded domain named BindGPILA functions as the unit for recognizing, binding and stabilizing the GPI lipid anchor in a modification-competent form as this appears the only functional aspect shared among all proteins. Thus, PIG-U's likely molecular function is shuttling/presenting the anchor in a productive conformation to the transamidase complex.  相似文献   

18.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is catalyzed by GPI transamidase (GPIT), a multisubunit, endoplasmic reticulum (ER)-localized enzyme. GPIT recognizes ER-translocated proteins that have a GPI-directing C-terminal signal sequence and replaces this sequence with a preassembled GPI anchor. Although the GPI signal sequence has been extensively characterized, little is known about the structural features of the GPI lipid substrate that enable its recognition by GPIT. In a previous study we showed that mature GPIs could be co-immunoprecipitated with GPIT complexes containing functional subunits (Vainauskas, S., and Menon, A. K. (2004) J. Biol. Chem. 279, 6540-6545). We now use this approach, as well as a method that reconstitutes the interaction between GPIs and GPIT, to define the basis of the interaction between GPI and human GPIT. We report that (i) human GPIT can interact with GPI biosynthetic intermediates, not just mature GPIs competent for transfer to protein, (ii) the ethanolamine phosphate group on the third mannose residue of the GPI glycan is not critical for GPI recognition by GPIT, (iii) the ethanolamine phosphate residue linked to the first mannose of the GPI structure is a major feature of GPIs that is recognized by human GPIT, and (iv) the simplest GPI recognized by human GPIT is EtN-P-2Manalpha1-4GlcN-(acyl)-phosphatidyl-inositol. These studies define the molecular characteristics of GPI that are recognized by GPIT and open the way to identifying GPIT subunits that are involved in this process.  相似文献   

19.
Prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored protein, and the C-terminal GPI anchor signal sequence (GPI-SS) of PrP is cleaved before GPI anchoring. However, mutations near the GPI anchor attachment site (the ω site) in the GPI-SS have been recognized in human genetic prion diseases. Moreover, the ω site of PrP has not been identified except hamster, though it is known that amino acid restrictions are very severe at the ω and ω + 2 sites in other GPI-anchored proteins. To investigate the effect of mutations near the ω site of PrP on the conversion and the GPI anchoring, and to discover the ω site of murine PrP, we systematically created mutant murine PrP with all possible single amino acid substitutions at every amino acid residue from codon 228 to 240. We transfected them into scrapie-infected mouse neuroblastoma cells and examined the conversion efficiencies and the GPI anchoring of each mutant PrP. Mutations near the ω site altered the conversion efficiencies and the GPI anchoring efficiencies. Especially, amino acid restrictions for the conversion and the GPI anchoring were severe at codons 230 and 232 in murine PrP, though they were less severe than in other GPI-anchored proteins. Only the mutant PrPs presented on a cell surface via a GPI anchor were conversion competent. The present study shows that mutations in the GPI-SS can affect the GPI anchoring and the conversion efficiency of PrP. We clarified for the first time the ω site of murine PrP and the amino acid conditions near the ω site for the conversion as well as GPI anchoring.  相似文献   

20.
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify GPI-anchored proteins and understand the possible role of these proteins in breast cancer progression, we employed a combination of strategies. First, alpha toxin from Clostridium septicum was used to capture GPI-anchored proteins from human breast cancer tissues, cells, and serum for proteomic analysis. We also expressed short interfering RNAs targeting the expression of the GPAA1 and PIGT subunits of GPIT in breast cancer cell lines to identify proteins in which membrane localization is dependent on GPI anchor addition. Comparative membrane proteomics using nano-ESI-RPLC-MS/MS led to the discovery of several new potential diagnostic and therapeutic targets for breast cancer. Furthermore, we provide evidence that increased levels of GPI anchor addition in malignant breast epithelial cells promotes the dedifferentiation of malignant breast epithelial cells in part by increasing the levels of cell surface markers associated with mesenchymal stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号