首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
The Drosophila genes dally and dally-like encode glypicans, which are heparan sulphate proteoglycans anchored to the cell membrane by a glycosylphosphatidylinositol link. Genetic studies have implicated Dally and Dally-like in Wingless signalling in embryos and imaginal discs. Here, we test the signalling properties of these molecules in the embryonic epidermis. We demonstrate that RNA interference silencing of dally-like, but not dally, gives a segment polarity phenotype identical to that of null mutations in wingless or hedgehog. Using heterologous expression in embryos, we uncoupled the Hedgehog and Wingless signalling pathways and found that Dally-like and Dally, separately or together, are not necessary for Wingless signalling. Dally-like, however, is strictly necessary for Hedgehog signal transduction. Epistatic experiments show that Dally-like is required for the reception of the Hedgehog signal, upstream or at the level of the Patched receptor.  相似文献   

2.
3.
In Drosophila, imaginal wing discs, Wg and Dpp, play important roles in the development of sensory organs. These secreted growth factors govern the positions of sensory bristles by regulating the expression of achaete-scute (ac-sc), genes affecting neuronal precursor cell identity. Earlier studies have shown that Dally, an integral membrane, heparan sulfate-modified proteoglycan, affects both Wg and Dpp signaling in a tissue-specific manner. Here, we show that dally is required for the development of specific chemosensory and mechanosensory organs in the wing and notum. dally enhancer trap is expressed at the anteroposterior and dorsoventral boundaries of the wing pouch, under the control of hh and wg, respectively. dally affects the specification of proneural clusters for dally-sensitive bristles and shows genetic interactions with either wg or dpp signaling components for distinct sensory bristles. These findings suggest that dally can differentially regulate Wg- or Dpp-directed patterning during sensory organ assembly. We have also determined that, for pSA, a bristle on the lateral notum, dally shows genetic interactions with iroquois complex (IRO-C), a gene complex affecting ac-sc expression. Consistent with this interaction, dally mutants show markedly reduced expression of an iro::lacZ reporter. These findings establish dally as an important regulator of sensory organ formation via Wg- and Dpp-mediated specification of proneural clusters.  相似文献   

4.
Secreted signalling molecules affect the behavior of cells at a distance. Here we discuss how the Wnt family member Wingless reaches distant cells within the embryonic epidermis of Drosophila.We consider three possible mechanisms: free diffusion, restricted diffusion and active transport. We argue that free diffusion is unlikely to occur. However, a variant of restricted diffusion may account for Wingless transport. It may be that Wingless is carried from one side of a cell to the other by a drifting transmembrane protein such as a specific receptor or a glycosaminoglycan. Transfer from cell-to-cell would involve release from the donor cell and recapture in an adjacent cell. Alternatively, Wingless might be transported by a mechanism akin to transcytosis. This would involve the packaging of Wingless in specialized vesicles at one end of a cell, active transport across the cell, and vesicle fusion and Wingless release on the other side. We describe the evidence in favor and against these two alternatives.  相似文献   

5.
One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.  相似文献   

6.
7.
Active endocytotic processes are required for the normal distribution of Wingless (Wg) protein across the epidermal cells of each embryonic segment. To assess the functional consequences of this broad Wg distribution, we have devised a means of perturbing endocytosis in spatially restricted domains within the embryo. We have constructed a transgene expressing a dominant negative form of shibire (shi), the fly dynamin homologue. When this transgene is expressed using the GAL4-UAS system, we find that Wg protein distribution within the domain of transgene expression is limited and that Wg-dependent epidermal patterning events surrounding the domain of expression are disrupted in a directional fashion. Our results indicate that Wg transport in an anterior direction generates the normal expanse of naked cuticle within the segment and that movement of Wg in a posterior direction specifies diverse denticle cell fates in the anterior portion of the adjacent segment. Furthermore, we have discovered that interfering with posterior movement of Wg rescues the excessive naked cuticle specification observed in naked (nkd) mutant embryos. We propose that the nkd segment polarity phenotype results from unregulated posterior transport of Wg protein and therefore that wild-type Nkd function may contribute to the control of Wg movement within the epidermal cells of the segment.  相似文献   

8.
The Drosophila wing imaginal disc gives rise to three main regions along the proximodistal axis of the dorsal mesothoracic segment: the notum, proximal wing, and wing blade. Development of the wing blade requires the Notch and wingless signalling pathways to activate vestigial at the dorsoventral boundary. However, in the proximal wing, Wingless activates a different subset of genes, e.g., homothorax. This raises the question of how the downstream response to Wingless signalling differentiates between proximal and distal fate specification. Here, we show that a temporally dynamic response to Wingless signalling sequentially elaborates the proximodistal axis. In the second instar, Wingless activates genes involved in proximal wing development; later in the third instar, Wingless acts to direct the differentiation of the distal wing blade. The expression of a novel marker for proximal wing fate, zfh-2, is initially activated by Wingless throughout the "wing primordium," but later is repressed by the activity of Vestigial and Nubbin, which together define a more distal domain. Thus, activation of a distal developmental program is antagonistic to previously established proximal fate. In addition, Wingless is required early to establish proximal fate, but later when Wingless activates distal differentiation, development of proximal fate becomes independent of Wingless signalling. Since P-element insertions in the zfh-2 gene result in a revertable proximal wing deletion phenotype, it appears that zfh-2 activity is required for correct proximal wing development. Our data are consistent with a model in which Wingless first establishes a proximal appendage fate over notum, then the downstream response changes to direct the differentiation of a more distal fate over proximal. Thus, the proximodistal domains are patterned in sequence and show a distal dominance.  相似文献   

9.
10.
11.
The secreted signaling protein Wingless acts as a morphogen to pattern the imaginal discs of Drosophila. Here we report identification of a secreted repressor of Wingless activity, which we call Notum. Loss of Notum function leads to increased Wingless activity by altering the shape of the Wingless protein gradient. When overexpressed, Notum blocks Wingless activity. Notum encodes a member of the alpha/beta-hydrolase superfamily, with similarity to pectin acetylesterases. We present evidence that Notum influences Wingless protein distribution by modifying the heparan sulfate proteoglycans Dally-like and Dally. High levels of Wingless signaling induce Notum expression. Thus, Wingless contributes to shaping its own gradient by regulating expression of a protein that modifies its interaction with cell surface proteoglycans.  相似文献   

12.
13.
Imaginal discs contain a population of cells, known as peripodial epithelium, that differ morphologically and genetically from the rest of imaginal cells. The peripodial epithelium has a small contribution to the adult epidermis, though it is essential for the eversion of the discs during metamorphosis. The genetic mechanisms that control the identity and cellular morphology of the peripodial epithelia are poorly understood. In this report, we investigate the mechanisms that pattern the peripodial side of the wing imaginal disc during early larval development. At this time, the activities of the Wingless (Wg) and Epidermal growth factor receptor (Egfr) signalling pathways specify the prospective wing and notum fields, respectively. We show that peripodial epithelium specification occurs in the absence of Wingless and Egfr signalling. The ectopic activity in the peripodial epithelium of any of these signalling pathways transforms the shape of peripodial cells from squamous to columnar and resets their gene expression profile. Furthermore, peripodial cells where Wingless signalling is ectopically active acquire hinge identity, while ectopic Egfr activation results in notum specification. These findings suggest that suppression of Wg and Egfr activities is an early step in the development of the peripodial epithelium of the wing discs.  相似文献   

14.
During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade). Expression of the Iroquois complex (Iro-C) homeobox genes in the most proximal part of the disc defines the notum, since Iro-C(-) cells within this territory acquire the identity of the adjacent distal region, the wing hinge. Here we analyze how the expression of Iro-C is confined to the notum territory. Neither Wingless signalling, which is essential for wing development, nor Vein-dependent EGFR signalling, which is needed to activate Iro-C, appear to delimit Iro-C expression. We show that a main effector of this confinement is the TGFbeta homolog Decapentaplegic (Dpp), a molecule known to pattern the disc along its anterior-posterior axis. At early second larval instar, the Dpp signalling pathway functions only in the wing and hinge territories, represses Iro-C and confines its expression to the notum territory. Later, Dpp becomes expressed in the most proximal part of the notum and turns off Iro-C in this region. This downregulation is associated with the subdivision of the notum into medial and lateral regions.  相似文献   

15.
Cox RT  McEwen DG  Myster DL  Duronio RJ  Loureiro J  Peifer M 《Genetics》2000,155(4):1725-1740
During development signaling pathways coordinate cell fates and regulate the choice between cell survival or programmed cell death. The well-conserved Wingless/Wnt pathway is required for many developmental decisions in all animals. One transducer of the Wingless/Wnt signal is Armadillo/beta-catenin. Drosophila Armadillo not only transduces Wingless signal, but also acts in cell-cell adhesion via its role in the epithelial adherens junction. While many components of both the Wingless/Wnt signaling pathway and adherens junctions are known, both processes are complex, suggesting that unknown components influence signaling and junctions. We carried out a genetic modifier screen to identify some of these components by screening for mutations that can suppress the armadillo mutant phenotype. We identified 12 regions of the genome that have this property. From these regions and from additional candidate genes tested we identified four genes that suppress arm: dTCF, puckered, head involution defective (hid), and Dpresenilin. We further investigated the interaction with hid, a known regulator of programmed cell death. Our data suggest that Wg signaling modulates Hid activity and that Hid regulates programmed cell death in a dose-sensitive fashion.  相似文献   

16.
17.
In cell culture assays, Frizzled and Dfrizzled2, two members of the Frizzled family of integral membrane proteins, are able to bind Wingless and transduce the Wingless signal. To address the role of these proteins in the intact organism and to explore the question of specificity of ligand-receptor interactions in vivo, we have conducted a genetic analysis of frizzled and Dfrizzled2 in the embryo. These experiments utilize a small gamma-ray-induced deficiency that uncovers Dfrizzled2. Mutants lacking maternal frizzled and zygotic frizzled and Dfrizzled2 exhibit defects in the embryonic epidermis, CNS, heart and midgut that are indistinguishable from those observed in wingless mutants. Epidermal patterning defects in the frizzled, Dfrizzled2 double-mutant embryos can be rescued by ectopic expression of either gene. In frizzled, Dfrizzled2 mutant embryos, ectopic production of Wingless does not detectably alter the epidermal patterning defect, but ectopic production of an activated form of Armadillo produces a naked cuticle phenotype indistinguishable from that produced by ectopic production of activated Armadillo in wild-type embryos. These experiments indicate that frizzled and Dfrizzled2 function downstream of wingless and upstream of armadillo, consistent with their proposed roles as Wingless receptors. The lack of an effect on epidermal patterning of ectopic Wingless in a frizzled, Dfrizzled2 double mutant argues against the existence of additional Wingless receptors in the embryo or a model in which Frizzled and Dfrizzled2 act simply to present the ligand to its bona fide receptor. These data lead to the conclusion that Frizzled and Dfrizzled2 function as redundant Wingless receptors in multiple embryonic tissues and that this role is accurately reflected in tissue culture experiments. The redundancy of Frizzled and Dfrizzled2 explains why Wingless receptors were not identified in earlier genetic screens for mutants defective in embryonic patterning.  相似文献   

18.
19.
The regulation of signal transduction plays a key role in cell fate choices, and its disregulation contributes to oncogenesis. This duality is exemplified by the tumor suppressor APC. Originally identified for its role in colon tumors, APC family members were subsequently shown to negatively regulate Wnt signaling in both development and disease. The analysis of the normal roles of APC proteins is complicated by the presence of two APC family members in flies and mice. Previous work demonstrated that, in some tissues, single mutations in each gene have no effect, raising the question of whether there is functional overlap between the two APCs or whether APC-independent mechanisms of Wnt regulation exist. We addressed this by eliminating the function of both Drosophila APC genes simultaneously. We find that APC1 and APC2 play overlapping roles in regulating Wingless signaling in the embryonic epidermis and the imaginal discs. Surprisingly, APC1 function in embryos occurs at levels of expression nearly too low to detect. Further, the overlapping functions exist despite striking differences in the intracellular localization of the two APC family members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号