首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Organophosphate and carbamate insecticides irreversibly inhibit acetylcholinesterase causing death of insects. Resistance-modified acetylcholinesterases(AChEs) have been described in many insect species and sequencing of their genes allowed several point mutations to be described. However, their relative frequency and their cartography had not yet been addressed.

Results

To analyze the most frequent mutations providing insecticide resistance in Drosophila melanogaster acetylcholinesterase, the Ace gene was cloned and sequenced in several strains harvested from different parts of the world. Sequence comparison revealed four widespread mutations, I161V, G265A, F330Y and G368A. We confirm here that mutations are found either isolated or in combination in the same protein and we show that most natural populations are heterogeneous, composed of a mixture of different alleles. In vitro expression of mutated proteins showed that combining mutations in the same protein has two consequences: it increases resistance level and provides a wide spectrum of resistance.

Conclusion

The presence of several alleles in natural populations, offering various resistance to carbamate and organophosphate compounds will complicate the establishment of resistance management programs.
  相似文献   

2.
3.
4.

Objective

To heterologously produce the Shigella dysenteriae serotype 1 O-polysaccharide (O-PS, O-antigen) in Escherichia coli by transferring the minimum number of genes instead of the entire O-PS gene cluster.

Results

The three glycosyltransferase genes (rfbR, rfbQ and rfp) responsible for the formation of the O-repeat unit were introduced into E. coli K-12 W3110 to synthesize S. dysenteriae 1 O-PS. The specific O-antigen ladder type with different chain lengths of O-repeat units was observed in the recombinant E. coli strain by SDS-PAGE silver staining and western blotting using S. dysenteriae 1 lipopolysaccharide antiserum. Analysis by mass spectrometry and ion chromatography suggested generation of the specific S. dysenteriae 1 O-repeat unit structure with an extra glucose residue attached.

Conclusions

Recombinant E. coli expressing specific glycosyltransferase genes can generate the O-PS of S. dysenteriae 1 and might be able to synthesize heterologous O-antigens of various pathogenic bacteria for vaccine preparation.
  相似文献   

5.

Introduction

Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.

Objective

To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.

Methods

A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(?) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.

Results

Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.

Conclusions

Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.
  相似文献   

6.

Background

Acinetobacter baumannii is an important nosocomial pathogen that can develop multidrug resistance. In this study, we characterized the genome of the A. baumannii strain DMS06669 (isolated from the sputum of a male patient with hospital-acquired pneumonia) and focused on identification of genes relevant to antibiotic resistance.

Methods

Whole genome analysis of A. baumannii DMS06669 from hospital-acquired pneumonia patients included de novo assembly; gene prediction; functional annotation to public databases; phylogenetics tree construction and antibiotics genes identification.

Results

After sequencing the A. baumannii DMS06669 genome and performing quality control, de novo genome assembly was carried out, producing 24 scaffolds. Public databases were used for gene prediction and functional annotation to construct a phylogenetic tree of the DMS06669 strain with 21 other A. baumannii strains. A total of 18 possible antibiotic resistance genes, conferring resistance to eight distinct classes of antibiotics, were identified. Eight of these genes have not previously been reported to occur in A. baumannii.

Conclusions

Our results provide important information regarding mechanisms that may contribute to antibiotic resistance in the DMS06669 strain, and have implications for treatment of patients infected with A. baumannii.
  相似文献   

7.

Background

Streptococcus pyogenes is an uncommon pathogen of purpura fulminans, and the pathogenesis of S. pyogenes-purpura fulminans remains unclear because of paucity of cases. We reported a pediatric case of S. pyogenes-purpura fulminans with literature review of the disease.

Case presentation

A 3-year-old boy showed limping, lethargy and acral gangrene within 24 h. A diagnosis of S. pyogenes-purpura fulminans was made for bacterial isolation from throat and peripheral blood. Intensive therapy led to a survival with amputation of the left distal metatarsal bone, and normal development. The isolated M12 carried no mutation of csrS/R or rgg. Thrombophilia or immunodeficiency was excluded.

Discussion

Twelve-reported cases (9 pediatric and 3 elderly) of S. pyogenes-purpura fulminans started with shock and coagulopathy. Five patients age <?8 years had no underlying disease and survived. One youngest and two immunocompromised patients died.

Conclusion

Streptococcus pyogenes-acute infectious purpura fulminans is a distinctive rare form of aggressive GAS infections.
  相似文献   

8.
9.

Objectives

To develop preventive canine oral health bio-materials consisting of probiotics and glucanase to reduce insoluble glucan and volatile sulfur compound formation.

Results

Co-cultivation of Enterococcus faecium T7 with Streptococcus mutans at inoculation ratio of 3:1 (v/v) resulted in 25% reduction in the growth of Streptococcus mutans. Amounts of soluble and insoluble glucans produced by S. mutans were decreased to 70 and 55%, respectively. Insoluble glucan was decreased from 0.6 µg/ml in S. mutans culture to 0.03 µg/ml in S. mutans co-cultivated with E. faecium T7 in the presence of Lipomyces starkeyi glucanase. Volatile sulfur compound, a main component of halitosis produced by Fusobacteria nucleatum, was decreased by co-cultivating F. nucleatum with E. faecium.

Conclusion

E. faecium and glucanase can be combined as potentially active ingredients of oral care products for pets by reducing plaque-forming bacteria growth and their by-products that cause cavity and periodontal disease.
  相似文献   

10.

Background

For many years, yeast cell walls (YCW) and mannan oligosaccharides (MOS) have been used as alternatives to antibiotics and health feed additives to enhance the growth performance and health of food animals. In the present study, the inhibitory effects of YCWand MOS on the adhesion of enteropathogenic bacteria to intestinal epithelial cells were tested.

Methods

YCW and MOS were extracted from Saccharomyces cerevisiae (XM 0315), and the morphology of YCW and MOS bound to pathogenic bacteria was observed by scanning electron microscopy (SEM). Real-time fluorescent quantitative PCR was used to quantitatively analyze the effects of YCW and MOS on the adhesion of Escherichia coli (CVCC3367) and Salmonella pullorum (CVCC520) to Caco-2 cells.

Results

The results showed that YCW inhibited E. coli and S. pullorum binding to Caco-2 cells by 95% and 74%, respectively, whereas MOS prevented E. coli and S. pullorum binding by 67% and 50%, respectively.

Conclusions

These data suggest that YCW has a stronger ability than MOS to inhibit pathogenic bacteria from adhering to Caco-2 cells in vitro.
  相似文献   

11.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

12.

Purpose of Review

To provide information about the emergence of fluconazole resistance in Candida albicans isolated from vaginal discharge, in a global context, and to update the in vitro susceptibility profile of this species from Argentina.

Recent Findings

Vulvovaginal candidiasis is the second most common vaginal infection after vaginal bacteriosis. C. albicans remains the prevalent etiological yeast species, and despite antifungal treatment, the rate of recurrence remains high, which may be associated to antifungal resistance.

Summary

Data here presented were obtained from the study of C. albicans strains isolated from patients with clinical signs of vulvovaginal candidiasis from 1996 to 2017. Data obtained could represent the susceptibility profile of C. albicans strains circulating in Argentina and could be of potential usefulness to monitor and guide therapy, and also suggests the need for greater surveillance programs to detect fluconazole resistance over time.
  相似文献   

13.

Objectives

To test the applicability of Cpf1 from Francisella novivida in genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.

Results

An easy-to-use vector toolkit, containing a CEN6/ARS4 plasmid expressing Cpf1 from Francisella novivida (FnCpf1) and a 2 μ plasmid for crRNA or crRNA array expressing, was constructed for Cpf1-assisted genomic integration in S. cerevisiae. Our results showed that FnCpf1 allowed for targeted singleplex, doubleplex, and tripleplex genomic integration of in vivo assembled DNA parts with efficiencies of 95, 52, and 43%, respectively.

Conclusions

CRISPR-Cpf1 system allows for efficient genomic integration of in vivo assembled DNA parts in S. cerevisiae, and thus provides an alternative CRISPR-Cas method for metabolic pathway engineering in addition to CRISPR-Cas9 system previously reported for yeast.
  相似文献   

14.

Aim

Malassezia folliculitis is caused by the invasion of hair follicles by large numbers of Malassezia cells. Several Malassezia researches still use cultures, morphology and biochemical techniques. The aim of this study was to identify Malassezia species isolated from patients diagnosed with folliculitis, at the Parasitology and Mycology Laboratory of Sfax University Hospital, and to explore the genetic diversity of Malassezia by using PCR-RFLP and PCR-sequencing targeting the rDNA region of the Malassezia genome.

Patients and Methods

Specimens were taken from 27 patients with Malassezia folliculitis. For the molecular identification, PCR amplification of the 26S rDNAD1/D2 region was carried out using the Malup and Maldown primers and three restriction enzymes (BanI, MspI and HeaII) for RFLP analysis. The nucleotide sequences of each isolate were compared to those in the NCBI GenBank by using BLASTIN algorithm.

Results

Three species of Malassezia yeasts were identified among the 31 Malassezia strains isolated: M. globosa (83.9%), M. sympodialis (12. 9%) and M. furfur (3.2%). The sequence analysis of M. globosa showed six genotypes.

Conclusion

There is a high genotypic variability of M. globosa colonizing patients with folliculitis.
  相似文献   

15.

Objectives

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation.

Results

Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants.

Conclusions

Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.
  相似文献   

16.

Objectives

Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress.

Results

Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g-1 dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain.

Conclusion

The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.
  相似文献   

17.

Background

Mortality rates for patients with Staphylococcus aureus (S. aureus) infections have improved only modestly in recent decades and S. aureus infections remain a major clinical challenge This study investigated the in vitro antimicrobial activity of erevacycline (erava) against clinical S. aureus isolates from China, as well as the heteroresistance frequency of erava and sequence types (STs) represented in the sample.

Results

A sample of 328 non-duplicate clinical S. aureus isolates, including 138 methecillin-resistant (MRSA) and 190 methecillin-sensitive (MSSA) isolates, were collected retrospectively in China. Erava exhibited excellent in vitro activity (MIC50 ≤?0.25?mg/L) against MRSA and MSSA, including isolates harboring Tet specific resistance genes. The frequency of erava heteroresistance in MSSA with erava MICs?=?0.5?mg/L was 13.79% (4/29); no MRSA with erava MICs ≤0.5?mg/L exhibited heteroresistance. Heteroresistance- derived clones had no 30S ribosome subunit mutations, but their erava MICs (range, 1–4?mg/L) were suppressed dramatically in the presence of efflux protein inhibitors.

Conclusions

Conclusively, erava exhibited excellent in vitro activity against S. aureus, however hints of erava heteroresistance risk and MIC creep were detected, particularly among MSSA with MICs of 0.5?mg/L.
  相似文献   

18.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

19.

Aims

Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.

Methods

Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.

Results

All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.

Conclusions

It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.
  相似文献   

20.

Introduction

Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available.

Objective

The aim of this study was to characterize the metabolic response of porcine colon explants to infection by B. hyodysenteriae.

Methods

Porcine colon explants exposed to B. hyodysenteriae were analyzed for histopathological, metabolic and pro-inflammatory gene expression changes.

Results

Significant epithelial necrosis, increased levels of l-citrulline and IL-1α were observed on explants infected with B. hyodysenteriae.

Conclusions

The spirochete induces necrosis in vitro likely through an inflammatory process mediated by IL-1α and NO.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号