首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Simian immunodeficiency virus (SIV), like its human homologues (HIV-1, HIV-2), requires a -1 translational frameshift event to properly synthesize all of the proteins required for viral replication. The frameshift mechanism is dependent upon a seven-nucleotide slippery sequence and a downstream RNA structure. In SIV, the downstream RNA structure has been proposed to be either a stem-loop or a pseudoknot. Here, we report the functional, structural and thermodynamic characterization of the SIV frameshift site RNA. Translational frameshift assays indicate that a stem-loop structure is sufficient to promote efficient frameshifting in vitro. NMR and thermodynamic studies of SIV RNA constructs of varying length further support the absence of any pseudoknot interaction and indicate the presence of a stable stem-loop structure. We determined the structure of the SIV frameshift-inducing RNA by NMR. The structure reveals a highly ordered 12 nucleotide loop containing a sheared G-A pair, cross-strand adenine stacking, two G-C base-pairs, and a novel CCC triloop turn. The loop structure and its high thermostability preclude pseudoknot formation. Sequence conservation and modeling studies suggest that HIV-2 RNA forms the same structure. We conclude that, like the main sub-groups of HIV-1, SIV and HIV-2 utilize stable stem-loop structures to function as a thermodynamic barrier to translation, thereby inducing ribosomal pausing and frameshifting.  相似文献   

3.
4.
5.
The role of RNA polymerase in transcriptional fidelity   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
Majority of the promoter elements of mycobacteria do not function well in other eubacterial systems and analysis of their sequences has established the presence of only single conserved sequence located at the -10 position. Additional sequences for the appropriate functioning of these promoters have been proposed but not characterized, probably due to the absence of sufficient number of strong mycobacterial promoters. In the current study, we have isolated functional promoter-like sequences of mycobacteria from the pool of random DNA sequences. Based on the promoter activity in Mycobacterium smegmatis and score assigned by neural network promoter prediction program, we selected one of these promoter sequences, namely A37 for characterization in order to understand the structure of housekeeping promoters of mycobacteria. A37-RNAP complexes were subjected to DNase I footprinting and subsequent mutagenesis. Our results demonstrate that in addition to -10 sequences, DNA sequence at -35 site can also influence the activity of mycobacterial promoters by modulating the promoter recognition by RNA polymerase and subsequent formation of open complex. We also provide evidence that despite exhibiting similarities in -10 and -35 sequences, promoter regions of mycobacteria and Escherichia coli differ from each other due to differences in their requirement of spacer sequences between the two positions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Synthetic biology has developed numerous parts for building synthetic gene circuits. However, few parts have been described for prokaryotes to integrate two signals at a promoter in an AND fashion, i.e. the promoter is only activated in the presence of both signals. Here we present a new part for this function: a split intein T7 RNA polymerase. We divide T7 RNA polymerase into two expression domains and fuse each to a split intein. Only when both domains are expressed does the split intein mediate protein trans-splicing, yielding a full-length T7 RNA polymerase that can transcribe genes via a T7 promoter. We demonstrate an AND gate with the new part: the signal-to-background ratio is very high, resulting in an almost digital signal. This has utility for more complex circuits and so we construct a band-pass filter in Escherichia coli. The split intein approach should be widely applicable for engineering artificial gene circuit parts.  相似文献   

15.
16.
Roles of TFIID in transcriptional initiation by RNA polymerase II   总被引:41,自引:0,他引:41  
J Greenblatt 《Cell》1991,66(6):1067-1070
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号