首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent advances in cancer immuno‐therapeutics such as checkpoint inhibitors, chimeric antigen‐receptor T cells, and tumor infiltrating T cells (TIL) are now significantly impacting cancer patients in a positive manner. Although very promising, reports indicate no more than 25% of cases result in complete remission. One of the limitations of these treatments is the identity of putative cancer antigens in each patient, as it is technically challenging to identify cancer antigens in a rapid fashion. Thus, identification of cancer antigens followed by targeted treatment will increase the efficacy of cancer immunotherapies. To achieve this goal, a combined technologies platform of deep genomic sequencing and personalized immune assessment was devised, termed G enomics D riven I mmunoproteomics (GDI). Using this technological platform, we report the discovery of 149 tumor antigens from human breast cancer patients. Significant number of these putative cancer antigens arise from single nucleotide variants (SNVs), as well as insertions and deletions that results into frame‐shift mutations. We propose a general model of anti‐cancer immunity and suggest that the GDI platform may help identify patient‐specific tumor antigens in a timely fashion for precision immunotherapies.  相似文献   

2.
BackgroundWhile large-scale cancer genomic projects are comprehensively characterizing the mutational spectrum of various cancers, so far little attention has been devoted to either define the antigenicity of these mutations or to characterize the immune responses they elicit. Here we present a strategy to characterize the immunophenotypes and the antigen-ome of human colorectal cancer.ResultsWe apply our strategy to a large colorectal cancer cohort (n = 598) and show that subpopulations of tumor-infiltrating lymphocytes are associated with distinct molecular phenotypes. The characterization of the antigenome shows that a large number of cancer-germline antigens are expressed in all patients. In contrast, neo-antigens are rarely shared between patients, indicating that cancer vaccination requires individualized strategy. Analysis of the genetic basis of the tumors reveals distinct tumor escape mechanisms for the patient subgroups. Hypermutated tumors are depleted of immunosuppressive cells and show upregulation of immunoinhibitory molecules. Non-hypermutated tumors are enriched with immunosuppressive cells, and the expression of immunoinhibitors and MHC molecules is downregulated. Reconstruction of the interaction network of tumor-infiltrating lymphocytes and immunomodulatory molecules followed by a validation with 11 independent cohorts (n = 1,945) identifies BCMA as a novel druggable target. Finally, linear regression modeling identifies major determinants of tumor immunogenicity, which include well-characterized modulators as well as a novel candidate, CCR8, which is then tested in an orthologous immunodeficient mouse model.ConclusionsThe immunophenotypes of the tumors and the cancer antigenome remain widely unexplored, and our findings represent a step toward the development of personalized cancer immunotherapies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0620-6) contains supplementary material, which is available to authorized users.  相似文献   

3.
One of the deadly hallmarks of cancer is its ability to prosper within the constraints of the host immune system. Recent advances in immunoproteomics and high-throughput technologies have lead to profiling of the antibody repertoire in cancer patients. This in turn has lead to the identification of tumour associated antigens/autoantibodies. Autoantibodies are extremely attractive and promising biomarker entities, however there has been relatively little discussion on how to interpret the humoral immune response. It may be that autoantibody profiles hold the key to ultimately uncovering neoplastic associated pathways and through the process of immunosculpting the tumour may have yielded an immune response in the early stages of malignant tumour development. The aim of this review is to discuss the utility of the autoantibody response that is elicited as a result of malignancy and discuss the advantages and limitations of autoantibody profiling. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

4.
Malignant ascites is one of the common complication at the late stage of abdominal cancers, which may deteriorate the environment of abdominal cavity and lead to potential damage of functional cells. Interstitial cells of Cajal (ICCs) are mesoderm‐derived mesenchymal cells that function normal gastrointestinal motility. The pathological changes of ICCs or the reduced number may lead to the motility disorders of gastrointestinal tract. In this study, through analysis of malignant ascites which were obtained from cancer patients, we found that inflammatory cells, including tumour‐infiltrating lymphocytes, accounted for 17.26 ± 1.31% and tumour‐associated macrophages, occupied 19.06 ± 2.27% of total cells in the ascites, suggesting these inflammatory cells, in addition to tumour cells, may exert important influence on the tumour environment of abdominal cavity. We further demonstrated that the number of mice ICCs were significant decreased, as well as morphological and functional damage when ICCs were in the simulated tumour microenvironment in vitro. Additionally, we illustrated intestinal myoelectrical activity reduced and irregular with morphological changes of ICCs using the mice model of malignant ascites. In conclusion, our data suggested that inflammatory cells in malignant ascites may damage ICCs of the small intestine and lead to intestinal motility disorders.  相似文献   

5.
Vaccine and antibody-directed T cell tumour immunotherapy   总被引:3,自引:0,他引:3  
Clearer evidence for immune surveillance in malignancy and the identification of many new tumour-associated antigens (TAAs) have driven novel vaccine and antibody-targeted responses for therapy in cancer. The exploitation of active immunisation may be particularly favourable for TAA where tolerance is incomplete but passive immunisation may offer an additional strategy where the immune repertoire is affected by either tolerance or immune suppression. This review will consider how to utilise both active and passive types of therapy delivered by T cells in the context of the failure of tumour-specific immunity by presenting cancer patients. This article will outline the progress, problems and prospects of several different vaccine and antibody-targeted approaches for immunotherapy of cancer where proof of principle pre-clinical studies have been or will soon be translated into the clinic. Two examples of vaccination-based therapies where both T cell- and antibody-mediated anti-tumour responses are likely to be relevant and two examples of oncofoetal antigen-specific antibody-directed T cell therapies are described in the following sections: (1) therapeutic vaccination against human papillomavirus (HPV) antigens in cervical neoplasia; (2) B cell lymphoma vaccines including against immunoglobulin idiotype; (3) oncofoetal antigens as tumour targets for redirecting T cells with antibody strategies.  相似文献   

6.
While most immunotherapies for cancer have focused on eliciting specific CD8+ cytotoxic T lymphocyte killing of tumor cells, a mounting body of evidence suggests that stimulation of anti-tumor CD4+ T cell help may be required for highly effective therapy. Several MHC class II-restricted tumor antigens that specifically activate such CD4+ helper T lymphocytes have now been identified, including one from a melanoma tumor that is caused by a single base-pair mutation in the glycolytic enzyme triosephosphate isomerase. This mutation results in the conversion of a threonine residue to isoleucine within the antigenic epitope, concomitant with a greater than five log-fold increase in stimulation of a CD4+ tumor-infiltrating lymphocyte line. Here, we present the crystal structures of HLA-DR1 in complex with both wild-type and mutant TPI peptide antigens, the first structures of tumor peptide antigen/MHC class II complexes recognized by CD4+ T cells to be reported. These structures show that very minor changes in the binding surface for T cell receptor correspond to the dramatic differences in T cell stimulation. Defining the structural basis by which CD4+ T cell help is invoked in an anti-tumor immune response will likely aid the design of more effective cancer immunotherapies.  相似文献   

7.
Interleukin (IL)‐12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti‐cancer agent; however, clinical trials involving IL‐12 have been unsuccessful due to toxic side‐effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL‐12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL‐12‐producing and non‐producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL‐12‐producing tumour cells or low IL‐12‐producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL‐12 in both mixtures. Furthermore, immunizing mice with IL‐12‐producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4+ and CD8+ cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM‐1, LLC1 and moto1.1) that produce IL‐12. Our results show that the delivery of IL‐12 by cancer cells is an effective route for immune activation.  相似文献   

8.
Dendritic cells are special and powerful antigen‐presenting cells that can induce primary immune responses against tumour‐associated antigens. They can present antigens via both MHC‐I and MHC‐II, so they have the ability to stimulate both cytotoxic T lymphocytes and T helper cells. Furthermore, CD8+ cytotoxic T lymphocytes require activation by CD4+ T cells. This requires a CD4+T cell activator molecule, of which PADRE is one of the best. We chose an approach to use both of these important arms of the immune system. We prepared dendritic cells from mouse bone marrow, loaded them with our target peptides (P5 peptide alone or P5 + PADRE), and then injected these pulsed dendritic cells alone or in combination with CpG‐ODN (as adjuvant) into BALB/C mice. After the last boosting dose, mice were inoculated with TUBO cells, which overexpress HER2/neu. Two weeks after the tumour cell injection, immunological tests were performed on splenocyte suspensions, and the remaining mice were evaluated for tumour growth and survival. Our data indicate the formulation that contains PADRE plus P5 loaded onto DC in combination with CpG‐ODN was the most effective formulation at inducing immune responses. Interferon production in CD4+ and CD8+ gated cells, cytotoxicity rates of target cells and mice survival were all significantly greater in this group than in controls, and all the mice in this group were tumour‐free throughout the experiment. Based on our results and the role of HER2/neu as a candidate in human immunotherapy, this approach may be an effective cancer treatment.  相似文献   

9.
Vasculogenic mimicry (VM) is a brand‐new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel‐like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial‐mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM‐related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.  相似文献   

10.
Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour‐associated macrophages (TAMs) appeared to be implicated in metformin‐induced antitumour activities. However, how metformin inhibits TAMs‐induced tumour progression remains ill‐defined. Here, we report that metformin‐induced antitumour and anti‐angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2‐ to M1‐like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2‐TAMs‐induced angiogenic promotion, while also abrogating M1‐TAMs‐mediated anti‐angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs‐conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2‐polarized RAW264.7 macrophages. Based on these results, metformin‐induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.  相似文献   

11.
Cancer stem cells have been implicated in a number of solid malignancies including prostate cancer. In the case of localised prostate cancer, patients are often treated with surgery (radical prostatectomy) and/or radiotherapy. However, disease recurrence is an issue in about 30% of patients, who will then go on to receive hormone ablation therapy. Hormone ablation therapy is often palliative in a vast proportion of individuals, and for hormone-refractory patients, there are several immunotherapies targeting a number of prostate tumour antigens which are currently in development. However, clinical responses in this setting are inconsistent, and it is believed that the failure to achieve full and permanent tumour eradication is due to a small, resistant population of cells known as ‘cancer stem cells’ (CSCs). The stochastic and clonal evolution models are among several models used to describe cancer development. The general consensus is that cancer may arise in any cell as a result of genetic mutations in oncogenes and tumour suppressor genes, which consequently result in uncontrolled cell growth. The cancer stem cell theory, however, challenges previous opinion and proposes that like normal tissues, tumours are hierarchical and only the rare subpopulation of cells at the top of the hierarchy possess the biological properties required to initiate tumourigenesis. Furthermore, where most cancer models infer that every cell within a tumour is equally malignant, i.e. equally capable of reconstituting new tumours, the cancer stem cell theory suggests that only the rare cancer stem cell component possess tumour-initiating capabilities. Hence, according to this model, cancer stem cells are implicated in both tumour initiation and progression. In recent years, the role of epithelial–mesenchymal transition (EMT) in the advancement of prostate cancer has become apparent. Therefore, CSCs and EMT are both likely to play critical roles in prostate cancer tumourigenesis. This review summarises the current immunotherapeutic strategies targeting prostate tumour antigens taking into account the need to consider treatments that target cancer stem cells and cells involved in epithelial–mesenchymal transition.  相似文献   

12.
Malignant tumours are often characterised by significant rearrangement of the genome. This may be visible in the form of a deranged karyotype with both loss and gain of DNA sequences extending from chromosomal regions to whole chromosomes. In several tumour types, however, gross genomic derangements are minimal, and tumour cells contain one or more additional (supernumerary) chromosomes that may be unrecognisable in terms of a single origin. In this review we term such chromosomes cancer‐associated neochromosomes (CaNCs). In the absence of other identified genomic abnormalities, and because the CaNC is a common feature of the cancer type, it is hypothesised that the genetic alterations required for cell transformation are contained within its structure. In this review, we discuss the potential impact of modern genomic technologies on our understanding of the nature and causes of CaNC formation, which is central to several cancer types, exemplified here by well‐differentiated liposarcoma.  相似文献   

13.
Long non‐coding RNAs (lncRNAs) are important regulators of many cellular processes, and their aberrant expression and/or function is associated with many different diseases, including cancer. However, the identification of functional lncRNAs in gastric cancer is still a challenge. In this study, we describe a novel functional lncRNA, linc00483, that is upregulated and associated with tumorigenesis, tumour size, metastasis and poor prognosis in gastric cancer. In our study, linc00483 promoted gastric cancer cell proliferation, invasiveness and metastasis in vitro and in vivo. Mechanistically, upregulated expression of linc00483 in gastric cancer acts as a sponge to absorb endogenous tumour suppressor miR‐30a‐3p. Furthermore, it restores SPAG9 expression, which is negatively regulated by miR‐30a‐3p, and actives MAPK signaling pathway in gastric cancer cells. Thus, linc00483 is an oncogenic lncRNA in gastric cancer and targeting linc00483 or its pathway can potentially be useful in development of targeted therapies for patients with gastric cancer. Our results show that linc00483 is an important regulator in carcinogenesis and may be a useful biomarker to predict prognosis of gastric cancer patients. We believe our findings are novel and will be of interest to scientists working in many areas related to biomarkers in cancer.  相似文献   

14.
Tasmanian devils face extinction owing to the emergence of a contagious cancer. Devil facial tumour disease (DFTD) is a clonal cancer spread owing to a lack of major histocompatibility complex (MHC) barriers in Tasmanian devil populations. We present a comprehensive screen of MHC diversity in devils and identify 25 MHC types and 53 novel sequences, but conclude that overall levels of MHC diversity at the sequence level are low. The majority of MHC Class I variation can be explained by allelic copy number variation with two to seven sequence variants identified per individual. MHC sequences are divided into two distinct groups based on sequence similarity. DFTD cells and most devils have sequences from both groups. Twenty per cent of individuals have a restricted MHC repertoire and contain only group I or only group II sequences. Counterintuitively, we postulate that the immune system of individuals with a restricted MHC repertoire may recognize foreign MHC antigens on the surface of the DFTD cell. The implication of these results for management of DFTD and this endangered species are discussed.  相似文献   

15.
Immunotherapeutic potential of whole tumour cells   总被引:5,自引:0,他引:5  
Despite the identification of tumour antigens and their subsequent generation in subunit form for use as cancer vaccines, whole tumour cells remain a potent vehicle for generating anti-tumour immunity. This is because tumour cells express an array of target antigens for the immune system to react against, avoiding problems associated with major histocompatibility complex (MHC)-restricted epitope identification for individual patients. Furthermore, whole cells are relatively simple to propagate and are potentially efficient at contributing to the process of T cell priming. However, whole cells can also possess properties that allow for immune evasion, and so the question remains of how to enhance the immune response against tumour cells so that they are rejected. Scenarios where whole tumour cells may be utilised in immunotherapy include autologous tumour cell vaccines generated from resected primary tumour, allogeneic (MHC-disparate) cross-reactive tumour cell line vaccines, and immunotherapy of tumours in situ. Since tumour cells are considered poorly immunogenic, mainly because they express self-antigens in a non-stimulatory context, the environment of the tumour cells may have to be modified to become stimulatory by using immunological adjuvants. Recent studies have re-evaluated the relative roles of direct and cross-priming in generating anti-tumour immunity and have highlighted the need to circumvent immune evasion.  相似文献   

16.
17.
The antigen specificity of cytotoxic T cells, provided by T‐cell receptors (TCRs), plays a central role in human autoimmune diseases, infection, and cancer. As the TCR repertoire is unique in individual cytotoxic T cells, a strategy to analyze its gene rearrangement at the single‐cell level is required. In this study, we applied a high‐density microcavity array enabling target cell screening of several thousands of single cells for identification of functional TCR‐β gene repertoires specific to melanoma (gp100) and cytomegalovirus (CMV) antigens. T cells expressing TCRs with the ability to recognize fluorescent‐labeled antigen peptide tetramers were isolated by using a micromanipulator under microscopy. Regularly arranged cells on the microcavity array eased detection and isolation of target single cells from a polyclonal T‐cell population. The isolated single cells were then directly utilized for RT‐PCR. By sequencing the amplified PCR products, antigen‐specific TCR‐β repertoires for gp100 and human cytomegalovirus antigens were successfully identified at the single‐cell level. This simple, accurate, and cost‐effective technique for single‐cell analysis has further potential as a valuable and widely applicable tool for studies on gene screening and expression analyses of various kinds of cells. Biotechnol. Bioeng. 2010;106: 311–318. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
A better understanding of molecular signaling between myeloid‐derived suppressor cells (MDSC), tumor cells, T‐cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor‐bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro‐inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom‐up proteomic analysis to identify plasma membrane associated pro‐inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency.  相似文献   

19.
Exosomes play a crucial role in the crosstalk between cancer associated fibroblasts (CAFs) and cancer cells, contributing to carcinogenesis and the tumour microenvironment. Recent studies have revealed that CAFs, normal fibroblasts and cancer cells all secrete exosomes that contain miRNA, establishing a cell-cell communication network within the tumour microenvironment. For example, miRNA dysregulation in melanoma has been shown to promote CAF activation via induction of epithelial-mesenchymal transition (EMT), which in turn alters the secretory phenotype of CAFs in the stroma. This review assesses the roles of melanoma exosomal miRNAs in CAF formation and how CAF exosome-mediated feedback signalling to melanoma lead to tumour progression and metastasis. Moreover, efforts to exploit exosomal miRNA-mediated network communication between tumour cells and their microenvironment, and their potential as prognostic biomarkers or novel therapeutic targets in melanoma will also be considered.  相似文献   

20.
Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号