首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ndc80 complex is the key microtubule‐binding element of the kinetochore. In contrast to the well‐characterized interaction of Ndc80‐Nuf2 heads with microtubules, little is known about how the Spc24‐25 heterodimer connects to centromeric chromatin. Here, we present molecular details of Spc24‐25 in complex with the histone‐fold protein Cnn1/CENP‐T illustrating how this connection ultimately links microtubules to chromosomes. The conserved Ndc80 receptor motif of Cnn1 is bound as an α helix in a hydrophobic cleft at the interface between Spc24 and Spc25. Point mutations that disrupt the Ndc80–Cnn1 interaction also abrogate binding to the Mtw1 complex and are lethal in yeast. We identify a Cnn1‐related motif in the Dsn1 subunit of the Mtw1 complex, necessary for Ndc80 binding and essential for yeast growth. Replacing this region with the Cnn1 peptide restores viability demonstrating functionality of the Ndc80‐binding module in different molecular contexts. Finally, phosphorylation of the Cnn1 N‐terminus coordinates the binding of the two competing Ndc80 interaction partners. Together, our data provide structural insights into the modular binding mechanism of the Ndc80 complex to its centromere recruiters.  相似文献   

2.
The four-subunit Ndc80 complex, comprised of Ndc80/Nuf2 and Spc24/Spc25 dimers, directly connects kinetochores to spindle microtubules. The complex is anchored to the kinetochore at the Spc24/25 end, and the Ndc80/Nuf2 dimer projects outward to bind to microtubules. Here, we use cryoelectron microscopy and helical image analysis to visualize the interaction of the Ndc80/Nuf2 dimer with microtubules. Our results, when combined with crystallography data, suggest that the globular domain of the Ndc80 subunit binds strongly at the interface between tubulin dimers and weakly at the adjacent intradimer interface along the protofilament axis. Such a binding mode, in which the Ndc80 complex interacts with sequential α/β-tubulin heterodimers, may be important for stabilizing kinetochore-bound microtubules. Additionally, we define the binding of the Ndc80 complex relative to microtubule polarity, which reveals that the microtubule interaction surface is at a considerable distance from the opposite kinetochore-anchored end; this binding geometry may facilitate polymerization and depolymerization at kinetochore-attached microtubule ends.  相似文献   

3.
How kinetochores bind to microtubules and move on the mitotic spindle remain unanswered questions. Multiple systems have implicated the Ndc80/Hec1 (Ndc80) kinetochore complex in kinetochore-microtubule interaction and spindle checkpoint activity. In budding yeast, Ndc80 copurifies with three additional interacting proteins: Nuf2, Spc24, and Spc25. Although functional vertebrate homologs of Ndc80 and Nuf2 exist, extensive sequence similarity searches have not uncovered homologs of Spc24 and Spc25. We have purified the xNdc80 complex to homogeneity from Xenopus egg extracts and identified two novel interacting proteins. Although the sequences have greatly diverged, we have concluded that these are the functional homologs of the yeast Spc24 and Spc25 proteins based on limited sequence similarity, common coiled-coil domains, kinetochore localization, similar phenotypes, and copurification with xNdc80 and xNuf2. Using both RNAi and antibody injection experiments, we have extended previous characterization of the complex and found that Spc24 and Spc25 are required not only to establish, but also to maintain kinetochore-microtubule attachments and metaphase alignment. In addition, we show that Spc24 and Spc25 are required for chromosomal movement to the spindle poles in anaphase.  相似文献   

4.
The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.  相似文献   

5.
The functions of Beclin‐1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K‐III complex. Here, we describe a new role for Beclin‐1 in mitotic chromosome congression that is independent of the PI3K‐III complex and its role in autophagy. Beclin‐1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP‐E, CENP‐F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin‐1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin‐1 interacts directly with Zwint‐1—a component of the KMN (KNL‐1/Mis12/Ndc80) complex—which is essential for kinetochore–microtubule interactions. This suggests that Beclin‐1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.  相似文献   

6.
Here, we show that the budding yeast proteins Ndc80p, Nuf2p, Spc24p and Spc25p interact at the kinetochore. Consistently, Ndc80p, Nuf2p, Spc24p and Spc25p associate with centromere DNA in chromatin immunoprecipitation experiments, and SPC24 interacts genetically with MCM21 encoding a kinetochore component. Moreover, although conditional lethal spc24-2 and spc25-7 cells form a mitotic spindle, the kinetochores remain in the mother cell body and fail to segregate the chromosomes. Despite this defect in chromosome segregation, spc24-2 and spc25-7 cells do not arrest in metaphase in response to checkpoint control. Furthermore, spc24-2 cells showed a mitotic checkpoint defect when microtubules were depolymerized with nocodazole, indicating that Spc24p has a function in checkpoint control. Since Ndc80p, Nuf2p and Spc24p are conserved proteins, it is likely that similar complexes are part of the kinetochore in other organisms.  相似文献   

7.
Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-C's N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.  相似文献   

8.
Segregation of chromosomes during mitosis requires the interaction of dynamic microtubules with the kinetochore, a large protein structure established on the centromere region of sister chromatids. The core microtubule‐binding activity of the kinetochore resides in the KMN network, an outer kinetochore complex. As part of the KMN network, the Ndc80 complex, which is composed of Ndc80, Nuf2, Spc24, and Spc25, is able to bind directly to microtubules and has the ability to track with depolymerizing microtubules to produce chromosome movement. The Ndc80 complex binds directly to microtubules through a calponin homology domain and an unstructured tail in the N terminus of the Ndc80 protein. A recent flurry of papers has highlighted the importance of an internal loop region in Ndc80 in establishing end‐on attachment to microtubules. Here I discuss these recent findings that suggest that the Ndc80 internal loop functions as a binding site for proteins required for kinetochore‐microtubule interactions.  相似文献   

9.
Kinetochores are multicomponent assemblies that connect chromosomal centromeres to mitotic-spindle microtubules. The Ndc80 complex is an essential core element of kinetochores, conserved from yeast to humans. It is a rod-like assembly of four proteins- Ndc80p (HEC1 in humans), Nuf2p, Spc24p and Spc25p. We describe here the crystal structure of the most conserved region of HEC1, which lies at one end of the rod and near the N terminus of the polypeptide chain. It folds into a calponin-homology domain, resembling the microtubule-binding domain of the plus-end-associated protein EB1. We show that an Ndc80p-Nuf2p heterodimer binds microtubules in vitro. The less conserved, N-terminal segment of Ndc80p contributes to the interaction and may be a crucial regulatory element. We propose that the Ndc80 complex forms a direct link between kinetochore core components and spindle microtubules.  相似文献   

10.
Kinetochores are large multiprotein complexes that connect centromeres to spindle microtubules in all eukaryotes. Among the biochemically distinct kinetochore complexes, the conserved four-protein Mtw1 complex is a central part of the kinetochore in all organisms. Here we present the biochemical reconstitution and characterization of the budding yeast Mtw1 complex. Direct visualization by electron microscopy revealed an elongated bilobed structure with a 25-nm-long axis. The complex can be assembled from two stable heterodimers consisting of Mtw1p-Nnf1p and Dsn1p-Nsl1p, and it interacts directly with the microtubule-binding Ndc80 kinetochore complex via the centromere-proximal Spc24/Spc25 head domain. In addition, we have reconstituted a partial Ctf19 complex and show that it directly associates with the Mtw1 complex in vitro. Ndc80 and Ctf19 complexes do not compete for binding to the Mtw1 complex, suggesting that Mtw1 can bridge the microtubule-binding components of the kinetochore to the inner centromere.  相似文献   

11.
Molecular analysis of kinetochore architecture in fission yeast   总被引:16,自引:0,他引:16       下载免费PDF全文
Liu X  McLeod I  Anderson S  Yates JR  He X 《The EMBO journal》2005,24(16):2919-2930
Kinetochore composition and structure are critical for understanding how kinetochores of different types perform similar functions in chromosome segregation. We used affinity purification to investigate the kinetochore composition and assembly in Schizosaccharomyces pombe. We identified a conserved DASH complex that functions to ensure precise chromosome segregation. Unlike DASH in budding yeast that is localized onto kinetochores throughout the cell cycle, SpDASH is localized onto kinetochores only in mitosis. We also identified two independent groups of kinetochore components, one of which, the Sim4 complex, contains several novel Fta proteins in addition to known kinetochore components. DASH is likely to be associated with the Sim4 complex via Dad1 protein. The other group, Ndc80-MIND-Spc7 complex, contains the conserved Ndc80 and MIND complexes and Spc7 protein. We propose that fission yeast kinetochore is comprised of at least two major structural motifs that are biochemically separable. Our results suggest a high degree of conservation between the kinetochores of budding yeast and fission yeast even though many individual protein subunits do not have a high degree of sequence similarity.  相似文献   

12.
The Ndc80 complex is a constituent of the outer plate of the kinetochore and plays a critical role in establishing the stable kinetochore-microtubule interactions required for chromosome segregation in mitosis. The Ndc80 complex is evolutionarily conserved and contains the four subunits Spc24, Spc25, Nuf2, and Ndc80 (whose human homologue is called Hec1). All four subunits are predicted to contain globular domains and extensive coiled coil regions. To gain an insight into the organization of the human Ndc80 complex, we reconstituted it using recombinant methods. The hydrodynamic properties of the recombinant Ndc80 complex are identical to those of the endogenous HeLa cell complex and are consistent with a 1:1:1:1 stoichiometry of the four subunits and a very elongated shape. Two tight Hec1-Nuf2 and Spc24-Spc25 subcomplexes, each stabilized by a parallel heterodimeric coiled coil, maintain this organization. These subcomplexes tetramerize via an interaction of the C- and N-terminal portions of the Hec1-Nuf2 and Spc24-Spc25 coiled coils, respectively. The recombinant complex displays normal kinetochore localization upon injection in HeLa cells and is therefore a faithful copy of the endogenous Ndc80 complex.  相似文献   

13.

Background

Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain ∼70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.

Principal Findings

We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.

Conclusions/Significance

Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes.  相似文献   

14.
Mps2 (monopolar spindle protein) is a coiled-coil protein found at the spindle pole body (SPB) and at the nuclear envelope that is required for insertion of the SPB into the nuclear envelope. We identified three proteins that interact with Mps2 in a two-hybrid screen: Bbp1, Ynl107w and Spc24. All three proteins contain coiled-coil motifs that appear to be required for their interaction with Mps2. In this work, we verified the Mps2-Spc24 interaction by co-immunoprecipitation in vivo and by the in vitro interaction of recombinant proteins. Previous two-hybrid screens with Spc24 as bait had identified Spc25 and Ndc80 as putative interacting partners, and we verified these interactions in vivo by purification of TAP-tagged derivatives of Spc24 and Ndc80. Finally, we found that spc24 thermosensitive mutants had a chromosome segregation defect, but no apparent defect in SPB duplication. These results are consistent with recently published data showing that Spc24, Spc25 and Ndc80 are peripheral kinetochore com-ponents required for chromosome segregation. The Mps2-Spc24 interaction may contribute to the localization of Spc24 and other kinetochore components to the inner plaque of the SPB.  相似文献   

15.
16.
The microtubule-binding interface of the kinetochore is of central importance in chromosome segregation. Although kinetochore components that stabilize, translocate on, and affect the polymerization state of microtubules have been identified, none have proven essential for kinetochore-microtubule interactions. Here, we examined the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, which is essential for kinetochore-microtubule interactions in vivo. We identified two distinct microtubule-binding activities within the KMN network: one associated with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1. Formation of the complete KMN network, which additionally requires the Mis12 complex and the Spc24/Spc25 subunits of the Ndc80 complex, synergistically enhances microtubule-binding activity. Phosphorylation by Aurora B, which corrects improper kinetochore-microtubule connections in vivo, reduces the affinity of the Ndc80 complex for microtubules in vitro. Based on these findings, we propose that the conserved KMN network constitutes the core microtubule-binding site of the kinetochore.  相似文献   

17.
The Ndc80 complex, a kinetochore component conserved from yeast to humans, is essential for proper chromosome alignment and segregation during mitosis. It is an approximately 570 A long, rod-shaped assembly of four proteins--Ndc80p (Hec1), Nuf2p, Spc24p, and Spc25p--with globular regions at either end of a central shaft. The complex bridges from the centromere-proximal inner kinetochore layer at its Spc24/Spc25 globular end to the microtubule binding outer kinetochore layer at its Ndc80/Nuf2 globular end. We report the atomic structures of the Spc24/Spc25 globular domain, determined both by X-ray crystallography at 1.9 A resolution and by NMR. Spc24 and Spc25 fold tightly together into a single globular entity with pseudo-2-fold symmetry. Conserved residues line a common hydrophobic core and the bottom of a cleft, indicating that the functional orthologs from other eukaryotes will have the same structure and suggesting a docking site for components of the inner kinetochore.  相似文献   

18.
In mitosis, the accurate segregation of sister chromosomes relies on kinetochore, a multiple subunits complex assembled on centromere of each sister chromosome. As a core component of inner kinetochore, CENP‐I plays important functions to mediate kinetochore assembly and supports the faithful chromosome segregation. The structures of the N‐terminus and C‐terminus of CENP‐I homologs in complex with CENP‐H/K have been reported, respectively. Unfortunately, the intramolecular interactions of CENP‐I are poorly understood, and how CENP‐I interacts with CENP‐M remains unknown. Here, we verified a unique helix α11, which forms the intramolecular interactions with N‐terminal HEAT repeats in fungal CENP‐I. Deletion of the helix α11 exposed the hydrophobic surface and resulted in the in vitro protein aggregation of N‐terminal HEAT repeats of fungal CENP‐I. The corresponding helix and its intramolecular interaction are highly conserved in human CENP‐I. Deletion of the corresponding helix in human CENP‐I dramatically reduced the functional activity to interact with CENP‐H and CENP‐M. Mutations of the conserved residues on the helix in human CENP‐I significantly weakened the binding to CENP‐M, but not CENP‐H, in HeLa cells. Therefore, our findings for the first time unveiled a conserved helix of CENP‐I, which is important for the intramolecular interaction and function, and would be helpful for understanding the structure basis of how CENP‐I mediates the kinetochore assembly during cell cycle and mitosis.  相似文献   

19.
Our understanding of the structure and function of kinetochores has advanced dramatically over the past 10 years, yet how the plus end of spindle microtubules interacts with the kinetochore and establishes amphitelic attachment for proper sister chromatid segregation remains unresolved. However, several recent reports from different organisms have shed new light on this issue. A key player in microtubule-kinetochore interaction is the conserved Ndc80 outer kinetochore complex. In both yeast and human cells in particular, a ubiquitous internal ‘loop’ found in the Ndc80 molecule interrupting its C-terminal coiled-coil domain plays critical roles in protein-protein interaction, by recruiting microtubule-binding proteins to ensure proper kinetochore-microtubule attachment. In this commentary, we summarise the recent progress made and discuss the evolutionary significance of this loop’s role in microtubule dynamics at the kinetochore for accurate chromosome segregation.  相似文献   

20.
Chromosome segregation during meiosis and mitosis depends on the assembly of functional kinetochores within centromeric regions. Centromeric DNA and kinetochore proteins show surprisingly little sequence conservation despite their fundamental biological role. However, our identification in Drosophila melanogaster of the most diverged orthologs identified so far, which encode components of a kinetochore protein network including the Ndc80 and Mis complexes, further emphasizes the notion of a shared eukaryotic kinetochore design. To determine its spatial organization, we have analyzed by quantitative light microscopy hundreds of native chromosomes from transgenic Drosophila strains coexpressing combinations of red and green fluorescent fusion proteins, fully capable of providing the essential wild-type functions. Thereby, Cenp-A/Cid, Cenp-C, Mis12 and the Ndc80 complex were mapped along the inter sister kinetochore axis with a resolution below 10 nm. The C terminus of Cenp-C was found to be near but well separated from the innermost component Cenp-A/Cid. The N terminus of Cenp-C is further out, clustered with Mis12 and the Spc25 end of the rod-like Ndc80 complex, which is known to bind to microtubules at its other more distal Ndc80/Nuf2 end. Ralf B. Schittenhelm and Sebastian Heeger have equal contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号