首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

2.
3.
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within‐colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.  相似文献   

4.
5.
Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short‐rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time‐consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone‐related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot‐branching traits. Single‐nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%–99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.  相似文献   

6.
Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, Pnigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of ‘flavonic evolution’ in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies.  相似文献   

7.
Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho‐taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental ‘‐omics’ surveys suggest that protists make up most of the organismal and genetic complexity of our planet's ecosystems! With the current deluge of eukaryotic meta‐omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist ‐omics age to the fragile, centuries‐old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community‐based and expert‐driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL‐EBI, ensuring its broad use and long‐term preservation as a reference taxonomy for eukaryotes.  相似文献   

8.
9.
10.
In this study, we present the first comprehensive analyses of the diversity and distribution of marine protist (micro‐, nano‐, and picoeukaryotes) in the Western Fram Strait, using 454‐pyrosequencing and high‐pressure liquid chromatography (HPLC) at five stations in summer 2010. Three stations (T1; T5; T7) were influenced by Polar Water, characterized by cold water with lower salinity (<33) and different extents of ice concentrations. Atlantic Water influenced the other two stations (T6; T9). While T6 was located in the mixed water zone characterized by cold water with intermediate salinity (~33) and high ice concentrations, T9 was located in warm water with high salinity (~35) and no ice‐coverage at all. General trends in community structure according to prevailing environmental settings, observed with both methods, coincided well. At two stations, T1 and T7, characterized by lower ice concentrations, diatoms (Fragilariopsis sp., Porosira sp., Thalassiosira spp.) dominated the protist community. The third station (T5) was ice‐covered, but has been ice‐free for ~4 weeks prior to sampling. At this station, dinoflagellates (Dinophyceae 1, Woloszynskia sp. and Gyrodinium sp.) were dominant, reflecting a post‐bloom situation. At station T6 and T9, the protist communities consisted mainly of picoeukaryotes, e.g., Micromonas spp. Based on our results, 454‐pyrosequencing has proven to be an adequate tool to provide comprehensive information on the composition of protist communities. Furthermore, this study suggests that a snap‐shot of a few, but well‐chosen samples can provide an overview of community structure patterns and succession in a dynamic marine environment.  相似文献   

11.
Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long‐term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false‐positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin.  相似文献   

12.
Advanced resources for genome‐assisted research in barley (Hordeum vulgare) including a whole‐genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole‐genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA‐coding exome reduces barley genomic complexity more than 50‐fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in‐solution hybridization‐based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full‐length cDNAs and de novo assembled RNA‐Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA‐coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping‐by‐sequencing and genetic diversity analyzes.  相似文献   

13.
The Balkan Peninsula is a hot spot for European herpetofaunal biodiversity and endemism. The rock climbing lizards Dalmatolacerta oxycephala and Dinarolacerta mosorensis and the ground‐dwelling Dalmatian wall lizard Podarcis melisellensis are endemic to the Western Balkans, and their ranges largely overlap. Here, we present a comparative phylogeographical study of these three species in the area of their codistribution in order to determine the level of concordance in their evolutionary patterns. Phylogenetic analyses were performed based on two mitochondrial genes (cytochrome b and 16S rRNA), and a molecular clock approach was used to date the most important events in their evolutionary histories. We also tested for correlations regarding genetic differentiation among populations and their geographical distances. For all three species, a significant correlation between genetic and geographical distances was found. Within D. oxycephala, two deeply separated clades (‘island’ and ‘mainland clade’), with further subdivision of the ‘mainland clade’ into two subclades (‘south‐eastern’ and ‘north‐western’), were found. High sequence divergences were observed between these groups. From our data, the time of separation of the two main clades of D. oxycephala can be estimated at about 5 mya and at about 0.8 mya for the two subclades of the mainland clade. Within D. mosorensis, coalescence time may be dated at about 1 mya, while D. mosorensis and D. montenegrina separated around 5 mya. The results imply the existence of complex palaeo‐biogeographical and geological factors that probably influenced the observed phylogeographical patterns in these lacertid species, and point to the presence of numerous glacial/interglacial refugia. Furthermore, the observed cryptic genetic diversity within the presently monotypic species D. oxycephala prompts for a revision of its taxonomic and conservation status.  相似文献   

14.
Variation in mitochondrial DNA (mtDNA) and Y‐chromosome haplotypes was analysed in nine domestic sheep breeds (159 rams) and 21 mouflon ( Ovis musimon) sampled in the East Adriatic. Mitochondrial DNA analyses revealed a high frequency of type B haplotypes, predominantly in European breeds, and a very low frequency of type A haplotypes, which are more frequent in some Asian breeds. Mitochondrial haplotype Hmt‐3 was the most frequent (26.4%), and 37.1%, 20.8% and 7.6% of rams had haplotypes one, two and three mutations remote from Hmt‐3 respectively. In contrast, Y‐chromosome analyses revealed extraordinary paternal allelic richness: HY‐6, 89.3%; HY‐8, 5.0%; HY‐18, 3.1%; HY‐7, 1.3%; and HY‐5, 1.3%. In fact, the number of haplotypes observed is comparable to the number found in Turkish breeds and greater than the number found in European breeds so far. Haplotype HY‐18 (A‐oY1/135‐SRYM18), identified here for the first time, provides a link between the haplotype HY‐12 (A‐oY1/139‐SRYM18) found in a few rams in Turkey and haplotype HY‐9 (A‐oY1/131‐SRYM18) found in one ram in Ethiopia. All mouflons had type B mtDNA haplotypes, including the private haplotype (Hmt‐55), and all were paternally monomorphic for haplotype HY‐6. Our data support a quite homogeneous maternal origin of East Adriatic sheep, which is a characteristic of European breeds. At the same time, the high number of haplotypes found was surprising and intriguing, and it begs for further analysis. Simultaneous analysis of mtDNA and Y‐chromosome information allowed us to detect a large discrepancy between maternal and paternal lineages in some populations. This is most likely the result of breeder efforts to ‘upgrade’ local populations using rams with different paternal origins.  相似文献   

15.
16.
The White Park Cattle (WPC) is an indigenous ancient breed from the British Isles which has a long‐standing history in heroic sagas and documents. The WPC has retained many primitive traits, especially in their grazing behaviour and preferences. Altogether, the aura of this breed has led to much speculation surrounding its origin. In this study, we sequenced the mitogenomes from 27 WPC and three intronic fragments of genes from the Y chromosome of three bulls. We observed six novel mitogenomic lineages that have not been found in any other cattle breed so far. We found no evidence that the WPC is a descendant of a particular North or West European branch of aurochs. The WPC mitogenomes are grouped in the T3 cluster together with most other domestic breeds. Nevertheless, both molecular markers support the primitive position of the WPC within the taurine breeds.  相似文献   

17.
Sheath blight disease of rice caused by Rhizoctonia solani is one of the most dreaded plant diseases faced by the rice farmers all over the world. None of the commercially cultivated rice varieties have sufficient level of field resistance, and the disease is presently being managed by chemical pesticides. In this study, 40 isolates of rice sheath blight pathogen, collected from diverse rice ecosystems from 12 different states of India, were characterized for their morphological, pathological and genetic variation. The isolates showed wide morphological variation in terms of size of sclerotia and abundance of sclerotia production. The virulence of each pathogen isolate was studied on four rice varieties, that is TN1, IR 64, Tetep and Swarnadhan in glasshouse, and observations were taken by measuring the relative lesion height. The relative lesion heights produced by these isolates on four different rice varieties varied widely. Genetic variation of the isolates was analysed using ISSR markers. The primers based on AG, GA, AC and CA repeats were informative and revealed polymorphism among the isolates. The polymorphism information content (PIC) of the primers ranged from 0.80 to 0.96, while the resolving power (Rp) ranged from 3.7 to 15.35. Largely, grouping of the isolates happened based on their geographical origin. One isolate from Titabar, Assam, and another from Adialabad, Telangana, were quite distinct from rest of the isolates.  相似文献   

18.
Many countries in Africa, and more generally those in the Global South with tropical areas, are plagued by illnesses that the wealthier parts of the world (mainly ‘the West’) neither suffer from nor put systematic effort into preventing, treating or curing. What does an ethic with a recognizably African pedigree entail for the ways various agents ought to respond to such neglected diseases? As many readers will know, a characteristically African ethic prescribes weighty duties to aid on the part of those in a position to do so, and it therefore entails that there should have been much more contribution from the Western, ‘developed’ world. However, what else does it prescribe, say, on the part of sub‐Saharan governments and the African Union, and are they in fact doing it? I particularly seek to answer these questions here, by using the 2013‐16 Ebola crisis in West Africa to illustrate what should have happened but what by and large did not.  相似文献   

19.
20.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号