首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate the association between the serum lipid profile and components of the metabolic syndrome, such as central obesity (anthropometric, computed tomography and fat cell data), insulin, sex-hormone-binding-globulin (SHBG) and different hormones influencing this important syndrome, e.g. sex steroids, leptin and tumor necrosis factor-alpha (TNF-alpha). The sample consisted of 85 obese patients (30 men and 55 women) who had undergone abdominal surgery. Fasting serum lipids were analysed, as well as anthropometric and computed tomography data, perivisceral and subcutaneous fat cell size and serum glucose and hormones. Abdominal fat revealed itself as an important correlator of the adverse changes in plasma lipoprotein levels, the waist-to-hip-ratio and waist-to-thigh-ratio being the best morphological correlators in men and women, respectively. Intra-abdominal fat (VA) correlated significantly and positively to perivisceral fat cell size in women, while no correlation was found between subcutaneous fat accumulation (SA) and adipocyte size in both genders. Perivisceral fat cell size showed the greatest number of correlations with the adverse plasma lipid profile compared to that in the subcutaneous depot. SHBG and sex steroids showed a negative correlation with serum lipids considered a cardiovascular risk. In contrast, TNF-alpha and C-peptide were inversely correlated with potential protector lipids. In conclusion, abdominal obesity, adipocyte hypertrophy from visceral fat, serum TNF-alpha and C-peptide seem to be the best correlators of the lipoprotein disturbance characteristic of the metabolic syndrome, whereas SHBG and sex steroids could play a protective role regarding the lipid profile associated to this syndrome.  相似文献   

2.
Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

3.
ABSTRACT: Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.  相似文献   

4.
Sex steroids are important for brain function and protection. However, growing evidence suggests that these actions might depend on the timing of exposure to steroids. We have studied the effects of steroid administration on the survival of neural cells and we have partially characterized the possible mechanisms. The effect of a 24 h pre-treatment with 17β-estradiol or 17β-estradiol plus progesterone or medroxyprogesterone acetate on the toxic action of l-glutamate was used to test the experimental hypothesis. Pre-exposure to either steroid combinations turned in enhanced cell survival. Instead, addition of sex steroids together with l-glutamate, in the absence of a pre-exposure had no protective effect. Pre-treatment with the steroid combinations resulted in increased neural NOS expression and activity and blockade of NOS abolished the cytoprotective effects of steroids. These results suggest that NOS induction might be involved in sex steroid-induced neuroprotection. Furthermore, these data supports the hypothesis that prolonged and continued exposure to oestrogen and progesterone, leading to changes in gene expression, is necessary to obtain neuroprotection induced by sex steroids.  相似文献   

5.
Jian Cheng 《Steroids》2010,75(11):754-759
Biologic sex and sex steroids are important factors in clinical and experimental stroke. This review evaluates key evidence that biological sex strongly alters mechanisms and outcomes from cerebral ischemia. The role of androgens in male stroke is understudied and important to pursue given that male sex is a well known risk factor for human stroke. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. We review recent advances in our understanding of androgens in the context of ischemic cell death and neuroprotection. We also highlight some possible molecular mechanisms by which androgens impact ischemic outcomes.  相似文献   

6.
With one quarter of the population of the Western world now considered obese, it is essential that we understand the factors giving rise to elevated fat deposition. This review summarizes the cellular and molecular mechanisms governing the volume of white adipose tissue (WAT), and outlines the physiological signals that regulate these processes. Particular attention is given to the role of the gastric hormone, ghrelin, describing its actions in general and presenting detailed evidence of its role in regulating adipocyte biology. Combining this evidence with an analysis of the factors governing ghrelin secretion, leads to the hypothesis that during periods of food deprivation ghrelin acts as an energy deficit signal, defending the fat stored in responsive WAT against the forces of utilization. This scenario has clear implications for programmes of sustainable weight loss.  相似文献   

7.
8.
The role of white and brown adipose tissues in energy metabolism is well established. However, the existence of brown fat in adult humans was until very recently a matter of debate, and the molecular mechanisms underlying brown adipocyte development remained largely unknown. In 2009, several studies brought direct evidence for functional brown adipose tissue in adults. New factors involved in brown fat cell differentiation have been identified. Moreover, work on the origin of fat cells took an unexpected path with the recognition of different populations of brown fat cell precursors according to the anatomical location of the fat depots: a precursor common to skeletal muscle cells and brown adipocytes from brown fat depots, and a progenitor cell common to white adipocytes and brown adipocytes that appear in certain conditions in white fat depots. There is also mounting evidence that mature white adipocytes, including human fat cells, can be converted into brown fat-like adipocytes, and that the typical fatty acid storage phenotype of white adipocyte can be altered towards a fat utilization phenotype. These data open up new opportunities for the development of drugs for obesity and its metabolic and cardiovascular complications.  相似文献   

9.
Increasing evidence suggests a role for prostaglandins in the immune response. As steroids have been shown recently to modulate prostaglandin secretion, we have studied the secretion of prostaglandin and the effect of various steroids in culture of human thymus epithelial cells. Using reverse phase high pressure liquid chromatography and radioimmunoassays, we have shown that these cells produce substantial amounts of PGE2 and PGE and that this secretion is modulated by steroid hormones. Prostaglandin could represent one of the factors of the thymic environment which respond to steroid hormones.  相似文献   

10.
The growth of hormone-dependent human breast cancer is related to the activity of endogenous estrogens. The evidence for an etiological role of endogenous estrogens is still circumstantial. Life style and in particular dietary factors are held responsible for large geographic differences and time-trends in breast cancer incidence. The measurement of urinary estrogen metabolites and plasma estrogens has given no satisfactory explanation for the latter. The newly developed interest in the bioavailability of plasma sex steroids may offer a better understanding of the biology and epidemiology of breast cancer. Based on our observations on the relationship between plasma free fatty acids and estrogen-protein-binding and recently gained insight in the metabolic consequences of different types of body fat distribution we postulate that Western life style may act on breast cancer incidence through an influence on body fat distribution and resulting changes in sex steroid availability.  相似文献   

11.
Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.  相似文献   

12.
Studies we have carried out have revealed significant differences in oestrogen production and metabolism between normal women and postmenopausal women with breast cancer. The free, biologically available fraction of oestradiol is elevated in plasma from women with breast cancer and we have found that metabolic clearance rates and production rates of oestradiol are also increased. In vitro studies have suggested that lipids can influence the distribution of sex steroids in plasma and we have therefore examined the effect of dietary lipids on the distribution of sex steroids in plasma in vivo. Consumption of a meal with a high saturated fat content or the oral or i.v. administration of "Intralipid", a stabilised emulsion of soya bean oil that is high in unsaturated free fatty acids, had little effect on the available fractions of oestradiol in plasma. However, results from a preliminary study suggest that long-term changes in dietary fat intake can alter the distribution of steroids in plasma. It is concluded that dietary lipids may influence the availability of sex steroids to tissues. Such a mechanism could account for the significant correlation that has been found between dietary fat consumption and the incidence of breast cancer on a world-wide basis.  相似文献   

13.
This review considers evidence which reveals considerable complexity and sex differences in the response of the nigrostriatal dopaminergic (NSDA) system to hormonal influences. This pathway degenerates in Parkinson's disease (PD) and sex hormones contribute to sex differences in PD, where men fare worse than women. Here we discuss evidence from animal studies which allows us to hypothesize that, contrary to expectations, the acclaimed neuroprotective property of physiological concentrations of estradiol arises not by promoting NSDA neuron survival, but by targeting powerful adaptive responses in the surviving neurons, which restore striatal DA functionality until over 60% of neurons are lost. Estrogen generated locally in the NSDA region appears to promote these adaptive mechanisms in females and males to preserve striatal DA levels in the partially injured NSDA pathway. However, responses to systemic steroids differ between the sexes. In females there is general agreement that gonadal steroids and exogenous estradiol promote striatal adaptation in the partially injured NSDA pathway to protect against striatal DA loss. In contrast, the balance of evidence suggests that in males gonadal factors and exogenous estradiol have negligible or even harmful effects. Sex differences in the organization of NSDA-related circuitry may well account for these differences. Compensatory mechanisms and sexually dimorphic hard-wiring are therefore likely to represent important biological substrates for sex dimorphisms. As these processes may be targeted differentially by systemic steroids in males and females, further understanding of the underlying processes would provide valuable insights into the potential for hormone-based therapies in PD, which would need to be sex-specific. Alternatively, evidence that estrogen generated locally is protective in the injured male NSDA pathway indicates the great therapeutic potential of harnessing central steroid synthesis to ameliorate neurodegenerative disorders. A clearer understanding of the relative contributions and inter-relationships of central and systemic steroids within the NSDA system is an important goal for future studies.  相似文献   

14.
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.  相似文献   

15.
Rats show gender differences in responses to morphine and the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801); the role of sex steroids in mediating these differences is unclear. We tested the overall hypothesis that circulating gonadal steroids determine the gender differences in morphine- and MK-801-induced behavior and c-Fos expression. Morphine caused a greater expression of c-Fos in the striatum of intact males than of that females, which was independent of sex steroids. MK-801 completely inhibited morphine-induced c-Fos in intact females but only caused partial inhibition in intact males; castrated males showed complete inhibition, which was reversed by testosterone, but gonadal steroids had no effect on this response in females. In thalamus, there was a large sex difference in the response to MK-801 that was independent of gonadal steroids. Behavioral responses to morphine were greater in males, but responses to MK-801 were greater in females; both were sex steroid independent. These findings show significant sex differences in response to morphine and MK-801 that are mediated by sex steroid-dependent and -independent mechanisms, which may be important in treatment outcomes of drug addiction.  相似文献   

16.
The abundance of caveolae in adipocytes suggests a possible cell-specific role for these structures, and because these cells take up and release fatty acids as their quantitatively most robust activity, modulation of fatty acid movement is one such role that is supported by substantial in vitro and in vivo data. In addition, caveolae are particularly rich in cholesterol and sphingolipids, and indeed, fat cells harbor more cholesterol than any other tissue. In this article, we review the role of adipocyte caveolae with regard to these important lipid classes.  相似文献   

17.

Background

Recently, we have developed a novel transgenic mouse model by overexpressing prohibitin (PHB) in adipocytes, which developed obesity due to upregulation of mitochondrial biogenesis in adipocytes, hence named “Mito-Ob.” Interestingly, only male Mito-Ob mice developed obesity-related impaired glucose homeostasis and insulin sensitivity, whereas female Mito-Ob mice did not. The observed sex differences in metabolic dysregulation suggest a potential involvement of sex steroids. Thus, the main aim of this study is to investigate the role of sex steroids on the overall phenotype of Mito-Ob mice through gonadectomy, as well as direct effect of sex steroids on adipocytes from Mito-Ob mice in vitro.

Methods

Mito-Ob mice and wild-type CD-1 mice were gonadectomized at 12 weeks of age. Age- and sex-matched sham-operated mice were used as controls. Body weight, white adipose tissue, glucose tolerance, and insulin sensitivity were analyzed 3 months post-surgery. Differentiation of adipocytes isolated from female and male Mito-Ob mice were studied with and without sex steroids.

Results

Gonadectomy significantly reduced body weight in Mito-Ob mice compared with sham-operated mice, whereas the opposite trend was observed in wild-type mice. These changes occurred independent of food intake. A corresponding decrease in adipose tissue weight was found in gonadectomized Mito-Ob mice, but depot-specific differences were observed in male and female. Gonadectomy improved glucose tolerance in male wild-type and Mito-Ob mice, but the effect was more pronounced in wild-type mice. Gonadectomy did not alter insulin sensitivity in male Mito-Ob mice, but it was improved in male wild-type mice. In primary cell cultures, testosterone inhibited adipocyte differentiation to a lesser extent in male Mito-Ob preadipocytes compared with the wild-type mice. On the other hand, preadipocytes from female wild-type mice showed better differentiation potential than those from female Mito-Ob mice in the presence of 17β-estradiol.

Conclusions

PHB requires sex steroids for the development of obese phenotype in Mito-Ob mice, which differentially affect glucose homeostasis and insulin sensitivity in male and female. It appears that PHB plays sex- and adipose depot-specific roles and involves additional factors. In vitro studies suggested that PHB differently influenced adipocyte differentiation in the presence and absence of sex steroids. Overall, this study along with available information in the literature indicated that a multifaceted relationship exists between PHB and sex steroids, which may work in a cell/tissue type- and sex-specific manner.
  相似文献   

18.
A Maggi  J Perez 《Life sciences》1985,37(10):893-906
  相似文献   

19.
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.  相似文献   

20.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号