首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Background

Data integration is a crucial task in the biomedical domain and integrating data sources is one approach to integrating data. Data elements (DEs) in particular play an important role in data integration. We combine schema- and instance-based approaches to mapping DEs to terminological resources in order to facilitate data sources integration.

Methods

We extracted DEs from eleven disparate biomedical sources. We compared these DEs to concepts and/or terms in biomedical controlled vocabularies and to reference DEs. We also exploited DE values to disambiguate underspecified DEs and to identify additional mappings.

Results

82.5% of the 474 DEs studied are mapped to entries of a terminological resource and 74.7% of the whole set can be associated with reference DEs. Only 6.6% of the DEs had values that could be semantically typed.

Conclusion

Our study suggests that the integration of biomedical sources can be achieved automatically with limited precision and largely facilitated by mapping DEs to terminological resources.
  相似文献   

2.

Background

Mapping medical terms to standardized UMLS concepts is a basic step for leveraging biomedical texts in data management and analysis. However, available methods and tools have major limitations in handling queries over the UMLS Metathesaurus that contain inaccurate query terms, which frequently appear in real world applications.

Methods

To provide a practical solution for this task, we propose a layered dynamic programming mapping (LDPMap) approach, which can efficiently handle these queries. LDPMap uses indexing and two layers of dynamic programming techniques to efficiently map a biomedical term to a UMLS concept.

Results

Our empirical study shows that LDPMap achieves much faster query speeds than LCS. In comparison to the UMLS Metathesaurus Browser and MetaMap, LDPMap is much more effective in querying the UMLS Metathesaurus for inaccurately spelled medical terms, long medical terms, and medical terms with special characters.

Conclusions

These results demonstrate that LDPMap is an efficient and effective method for mapping medical terms to the UMLS Metathesaurus.
  相似文献   

3.

Background

In biomedical research, events revealing complex relations between entities play an important role. Biomedical event trigger identification has become a research hotspot since its important role in biomedical event extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers, which aim to manually design powerful features fed to the classifiers, depend on the understanding of the specific task and cannot generalize to the new domain or new examples.

Methods

In this paper, we propose an approach which utilizes neural network model based on dependency-based word embedding to automatically learn significant features from raw input for trigger classification. First, we employ Word2vecf, the modified version of Word2vec, to learn word embedding with rich semantic and functional information based on dependency relation tree. Then neural network architecture is used to learn more significant feature representation based on raw dependency-based word embedding. Meanwhile, we dynamically adjust the embedding while training for adapting to the trigger classification task. Finally, softmax classifier labels the examples by specific trigger class using the features learned by the model.

Results

The experimental results show that our approach achieves a micro-averaging F1 score of 78.27 and a macro-averaging F1 score of 76.94 % in significant trigger classes, and performs better than baseline methods. In addition, we can achieve the semantic distributed representation of every trigger word.
  相似文献   

4.
Gao S  Xu S  Fang Y  Fang J 《Proteome science》2012,10(Z1):S7

Background

Identification of phosphorylation sites by computational methods is becoming increasingly important because it reduces labor-intensive and costly experiments and can improve our understanding of the common properties and underlying mechanisms of protein phosphorylation.

Methods

A multitask learning framework for learning four kinase families simultaneously, instead of studying each kinase family of phosphorylation sites separately, is presented in the study. The framework includes two multitask classification methods: the Multi-Task Least Squares Support Vector Machines (MTLS-SVMs) and the Multi-Task Feature Selection (MT-Feat3).

Results

Using the multitask learning framework, we successfully identify 18 common features shared by four kinase families of phosphorylation sites. The reliability of selected features is demonstrated by the consistent performance in two multi-task learning methods.

Conclusions

The selected features can be used to build efficient multitask classifiers with good performance, suggesting they are important to protein phosphorylation across 4 kinase families.
  相似文献   

5.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

6.

Background

Biomedical extraction based on supervised machine learning still faces the problem that a limited labeled dataset does not saturate the learning method. Many supervised learning algorithms for bio-event extraction have been affected by the data sparseness.

Methods

In this study, a semi-supervised method for combining labeled data with large scale of unlabeled data is presented to improve the performance of biomedical event extraction. We propose a set of rich feature vector, including a variety of syntactic features and semantic features, such as N-gram features, walk subsequence features, predicate argument structure (PAS) features, especially some new features derived from a strategy named Event Feature Coupling Generalization (EFCG). The EFCG algorithm can create useful event recognition features by making use of the correlation between two sorts of original features explored from the labeled data, while the correlation is computed with the help of massive amounts of unlabeled data. This introduced EFCG approach aims to solve the data sparse problem caused by limited tagging corpus, and enables the new features to cover much more event related information with better generalization properties.

Results

The effectiveness of our event extraction system is evaluated on the datasets from the BioNLP Shared Task 2011 and PubMed. Experimental results demonstrate the state-of-the-art performance in the fine-grained biomedical information extraction task.

Conclusions

Limited labeled data could be combined with unlabeled data to tackle the data sparseness problem by means of our EFCG approach, and the classified capability of the model was enhanced through establishing a rich feature set by both labeled and unlabeled datasets. So this semi-supervised learning approach could go far towards improving the performance of the event extraction system. To the best of our knowledge, it was the first attempt at combining labeled and unlabeled data for tasks related biomedical event extraction.
  相似文献   

7.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

8.

Background

High-throughput technologies, such as DNA microarray, have significantly advanced biological and biomedical research by enabling researchers to carry out genome-wide screens. One critical task in analyzing genome-wide datasets is to control the false discovery rate (FDR) so that the proportion of false positive features among those called significant is restrained. Recently a number of FDR control methods have been proposed and widely practiced, such as the Benjamini-Hochberg approach, the Storey approach and Significant Analysis of Microarrays (SAM).

Methods

This paper presents a straight-forward yet powerful FDR control method termed miFDR, which aims to minimize FDR when calling a fixed number of significant features. We theoretically proved that the strategy used by miFDR is able to find the optimal number of significant features when the desired FDR is fixed.

Results

We compared miFDR with the BH approach, the Storey approach and SAM on both simulated datasets and public DNA microarray datasets. The results demonstrated that miFDR outperforms others by identifying more significant features under the same FDR cut-offs. Literature search showed that many genes called only by miFDR are indeed relevant to the underlying biology of interest.

Conclusions

FDR has been widely applied to analyzing high-throughput datasets allowed for rapid discoveries. Under the same FDR threshold, miFDR is capable to identify more significant features than its competitors at a compatible level of complexity. Therefore, it can potentially generate great impacts on biological and biomedical research.

Availability

If interested, please contact the authors for getting miFDR.
  相似文献   

9.

Background:

Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing.

Results:

Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist.

Conclusion:

Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet http://bionlp.sourceforge.net.
  相似文献   

10.

Background

One of the recent challenges of computational biology is development of new algorithms, tools and software to facilitate predictive modeling of big data generated by high-throughput technologies in biomedical research.

Results

To meet these demands we developed PROPER - a package for visual evaluation of ranking classifiers for biological big data mining studies in the MATLAB environment.

Conclusion

PROPER is an efficient tool for optimization and comparison of ranking classifiers, providing over 20 different two- and three-dimensional performance curves.
  相似文献   

11.

Background

Imbalanced data classification is an inevitable problem in medical intelligent diagnosis. Most of real-world biomedical datasets are usually along with limited samples and high-dimensional feature. This seriously affects the classification performance of the model and causes erroneous guidance for the diagnosis of diseases. Exploring an effective classification method for imbalanced and limited biomedical dataset is a challenging task.

Methods

In this paper, we propose a novel multilayer extreme learning machine (ELM) classification model combined with dynamic generative adversarial net (GAN) to tackle limited and imbalanced biomedical data. Firstly, principal component analysis is utilized to remove irrelevant and redundant features. Meanwhile, more meaningful pathological features are extracted. After that, dynamic GAN is designed to generate the realistic-looking minority class samples, thereby balancing the class distribution and avoiding overfitting effectively. Finally, a self-adaptive multilayer ELM is proposed to classify the balanced dataset. The analytic expression for the numbers of hidden layer and node is determined by quantitatively establishing the relationship between the change of imbalance ratio and the hyper-parameters of the model. Reducing interactive parameters adjustment makes the classification model more robust.

Results

To evaluate the classification performance of the proposed method, numerical experiments are conducted on four real-world biomedical datasets. The proposed method can generate authentic minority class samples and self-adaptively select the optimal parameters of learning model. By comparing with W-ELM, SMOTE-ELM, and H-ELM methods, the quantitative experimental results demonstrate that our method can achieve better classification performance and higher computational efficiency in terms of ROC, AUC, G-mean, and F-measure metrics.

Conclusions

Our study provides an effective solution for imbalanced biomedical data classification under the condition of limited samples and high-dimensional feature. The proposed method could offer a theoretical basis for computer-aided diagnosis. It has the potential to be applied in biomedical clinical practice.
  相似文献   

12.

Background

Automatic recognition of relations between a specific disease term and its relevant genes or protein terms is an important practice of bioinformatics. Considering the utility of the results of this approach, we identified prostate cancer and gene terms with the ID tags of public biomedical databases. Moreover, considering that genetics experts will use our results, we classified them based on six topics that can be used to analyze the type of prostate cancers, genes, and their relations.

Methods

We developed a maximum entropy-based named entity recognizer and a relation recognizer and applied them to a corpus-based approach. We collected prostate cancer-related abstracts from MEDLINE, and constructed an annotated corpus of gene and prostate cancer relations based on six topics by biologists. We used it to train the maximum entropy-based named entity recognizer and relation recognizer.

Results

Topic-classified relation recognition achieved 92.1% precision for the relation (an increase of 11.0% from that obtained in a baseline experiment). For all topics, the precision was between 67.6 and 88.1%.

Conclusion

A series of experimental results revealed two important findings: a carefully designed relation recognition system using named entity recognition can improve the performance of relation recognition, and topic-classified relation recognition can be effectively addressed through a corpus-based approach using manual annotation and machine learning techniques.
  相似文献   

13.

Background

Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations.

Results

We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data.

Conclusion

We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.
  相似文献   

14.

Background

Biomedical literature is expanding rapidly, and tools that help locate information of interest are needed. To this end, a multitude of different approaches for classifying sentences in biomedical publications according to their coarse semantic and rhetoric categories (e.g., Background, Methods, Results, Conclusions) have been devised, with recent state-of-the-art results reported for a complex deep learning model. Recent evidence showed that shallow and wide neural models such as fastText can provide results that are competitive or superior to complex deep learning models while requiring drastically lower training times and having better scalability. We analyze the efficacy of the fastText model in the classification of biomedical sentences in the PubMed 200k RCT benchmark, and introduce a simple pre-processing step that enables the application of fastText on sentence sequences. Furthermore, we explore the utility of two unsupervised pre-training approaches in scenarios where labeled training data are limited.

Results

Our fastText-based methodology yields a state-of-the-art F1 score of.917 on the PubMed 200k benchmark when sentence ordering is taken into account, with a training time of only 73 s on standard hardware. Applying fastText on single sentences, without taking sentence ordering into account, yielded an F1 score of.852 (training time 13 s). Unsupervised pre-training of N-gram vectors greatly improved the results for small training set sizes, with an increase of F1 score of.21 to.74 when trained on only 1000 randomly picked sentences without taking sentence ordering into account.

Conclusions

Because of it’s ease of use and performance, fastText should be among the first choices of tools when tackling biomedical text classification problems with large corpora. Unsupervised pre-training of N-gram vectors on domain-specific corpora also makes it possible to apply fastText when labeled training data are limited.
  相似文献   

15.

Introduction

Metabolomics analysis depends on the identification and validation of specific metabolites. This task is significantly hampered by the absence of well-characterized reference standards. The one-carbon carrier 10-formyltetrahydrofolate acts as a donor of formyl groups in anabolism, where it is a substrate in formyltransferase reactions in purine biosynthesis. It has been reported as an unstable substance and is currently unavailable as a reference standard for metabolomics analysis.

Objectives

The current study was undertaken to provide the metabolomics community thoroughly characterized 10-formyltetrahydrofolate along with analytical methodology and guidelines for its storage and handling.

Methods

Anaerobic base treatment of 5,10-methenyltetrahydrofolate chloride in the presence of antioxidant was utilized to prepare 10-formyltetrahydrofolate.

Results

Pure 10-formyltetrahydrofolate has been prepared and physicochemically characterized. Conditions toward maintaining the stability of a solution of the dipotassium salt of 10-formyltetrahydrofolate have been determined.

Conclusion

This study describes the facile preparation of pure (>90%) 10-formyltetrahydrofolate, its qualitative physicochemical characterization, as well as conditions to enable its use as a reference standard in physiologic samples.
  相似文献   

16.
Lyu  Chuqiao  Wang  Lei  Zhang  Juhua 《BMC genomics》2018,19(10):905-165

Background

The DNase I hypersensitive sites (DHSs) are associated with the cis-regulatory DNA elements. An efficient method of identifying DHSs can enhance the understanding on the accessibility of chromatin. Despite a multitude of resources available on line including experimental datasets and computational tools, the complex language of DHSs remains incompletely understood.

Methods

Here, we address this challenge using an approach based on a state-of-the-art machine learning method. We present a novel convolutional neural network (CNN) which combined Inception like networks with a gating mechanism for the response of multiple patterns and longterm association in DNA sequences to predict multi-scale DHSs in Arabidopsis, rice and Homo sapiens.

Results

Our method obtains 0.961 area under curve (AUC) on Arabidopsis, 0.969 AUC on rice and 0.918 AUC on Homo sapiens.

Conclusions

Our method provides an efficient and accurate way to identify multi-scale DHSs sequences by deep learning.
  相似文献   

17.

Background

Various kinds of data mining algorithms are continuously raised with the development of related disciplines. The applicable scopes and their performances of these algorithms are different. Hence, finding a suitable algorithm for a dataset is becoming an important emphasis for biomedical researchers to solve practical problems promptly.

Methods

In this paper, seven kinds of sophisticated active algorithms, namely, C4.5, support vector machine, AdaBoost, k-nearest neighbor, naïve Bayes, random forest, and logistic regression, were selected as the research objects. The seven algorithms were applied to the 12 top-click UCI public datasets with the task of classification, and their performances were compared through induction and analysis. The sample size, number of attributes, number of missing values, and the sample size of each class, correlation coefficients between variables, class entropy of task variable, and the ratio of the sample size of the largest class to the least class were calculated to character the 12 research datasets.

Results

The two ensemble algorithms reach high accuracy of classification on most datasets. Moreover, random forest performs better than AdaBoost on the unbalanced dataset of the multi-class task. Simple algorithms, such as the naïve Bayes and logistic regression model are suitable for a small dataset with high correlation between the task and other non-task attribute variables. K-nearest neighbor and C4.5 decision tree algorithms perform well on binary- and multi-class task datasets. Support vector machine is more adept on the balanced small dataset of the binary-class task.

Conclusions

No algorithm can maintain the best performance in all datasets. The applicability of the seven data mining algorithms on the datasets with different characteristics was summarized to provide a reference for biomedical researchers or beginners in different fields.
  相似文献   

18.

Background

Adverse drug reactions (ADRs) are unintended and harmful reactions caused by normal uses of drugs. Predicting and preventing ADRs in the early stage of the drug development pipeline can help to enhance drug safety and reduce financial costs.

Methods

In this paper, we developed machine learning models including a deep learning framework which can simultaneously predict ADRs and identify the molecular substructures associated with those ADRs without defining the substructures a-priori.

Results

We evaluated the performance of our model with ten different state-of-the-art fingerprint models and found that neural fingerprints from the deep learning model outperformed all other methods in predicting ADRs. Via feature analysis on drug structures, we identified important molecular substructures that are associated with specific ADRs and assessed their associations via statistical analysis.

Conclusions

The deep learning model with feature analysis, substructure identification, and statistical assessment provides a promising solution for identifying risky components within molecular structures and can potentially help to improve drug safety evaluation.
  相似文献   

19.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

20.

Background

The ability to direct the cellular response by means of biomaterial surface topography is important for biomedical applications. Substrate surface topography has been shown to be an effective cue for the regulation of cellular response. Here, the response of human aortic endothelial cells to nanoporous anodic alumina and macroporous silicon with collagen and fibronectin functionalization has been studied.

Methods

Confocal microscopy and scanning electron microscopy were employed to analyse the effects of the material and the porosity on the adhesion, morphology, and proliferation of the cells. Cell spreading and filopodia formation on macro- and nanoporous material was characterized by atomic force microscopy. We have also studied the influence of the protein on the adhesion.

Results

It was obtained the best results when the material is functionalized with fibronectin, regarding cells adhesion, morphology, and proliferation.

Conclusion

These results permit to obtain chemical modified 3D structures for several biotechnology applications such as tissue engineering, organ-on-chip or regenerative medicine.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号