首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor suppressor, QM, has been cloned and characterized from various model organisms such as human, plant and invertebrates. Yet, it has not been seriously investigated for its role in conjunction with antiviral mechanisms involving innate insect immunity. From the expressed sequence tag (ESTs) project, conducted with larval cDNA library of cabbage butterfly, Pieris rapae, a partial fragment (718 bp) of QM homologue, termed PrQM containing 660 bp long open reading frame (ORF) encoding protein of 219 amino acids was identified. In silico analysis of PrQM ORF revealed the presence of ribosomal protein L10a/L10e type domain. Phylogenetic analysis of the P. rapae QM‐like protein showed high amino acid sequence similarity with other PrQM polypeptides identified from Heliothis virescenes (95%), Plutella rapae (92%), Bombyx mori (92%), Drosophila melanogaster (89%), and Polyrhachis vicina (85%). The butterfly QM has the closest phylogenetic relationship to a moth (Hv) QM homologue. Further investigations revealed the expression of PrQM at all developmental stages, with pronounced presence at the egg stage. In addition, spatial pattern analysis indicated its high expression in the head, salivary gland, integument and fat body with visible presence in Malpighian tubule and gut. Time course expression studies conducted after immune‐challenge with lipoteichoic acid (LTA) showed the induction of PrQM mRNA at 12 h and 24 h after challenge and also in response to granulovirus (GV). Results of this investigation therefore suggest possible role of QM‐like proteins from Pieris rapae to be involved in innate antiviral immune responses. Further elucidation on the precise function of PrQM during antiviral immune responses by using RNA interference remains a viable research front.  相似文献   

2.
FK506‐binding protein (FK506BP) class belonging to immunophilin protein family has been known to play key roles in modulating T‐cell activation, regulation of cell cycle and protein folding. However, little is known about the involvement of FK506BP during viral pathogenesis in insect host. In this study, an attempt has been made to focus on the involvement of FK506BP in antiviral innate immunity, by cloning the full‐length cDNA of FK506BP12 (PrFK506BP12) from the cabbage butterfly, Pieris rapae. It comprised of 532 bp (excluding poly‐A tail) with a longest open reading frame (ORF) of 327 bp encoding 108 amino acids. In silico analysis of PrFK506BP12 ORF revealed a highly conserved FK506‐binding domain (FKBD). As expected, it showed high homology to other FK506BPs identified from Bombyx mori (92%), Manduca sexta (91%), Suberites domuncula (82%), Tribolium castaneum (81%) and Aedes aegypti (74%) . Expression of PrFK506BP12 was observed during developmental stages of P. rapae, but was pronounced in late pupal and adult stage. In addition, spatial expression pattern analysis indicated its high expression in the head and fat body. Furthermore, PrFK506BP12 mRNA was induced 12 h after LTA, Poly I:C treatment and 3h after Pieris rapae granulovirus (PrGV) treatment in carcass. It suggests that PrFK506BP12 appears to be involved in immune responses and also play an important role in the fat body, although it remains to be clarified about their precise role in response to granulovirus.  相似文献   

3.
1. Female parasitoids have evolved various foraging strategies in order to find suitable hosts. Egg parasitoids have been shown to exploit plant cues induced by the deposition of host eggs. 2. The tiny wasp Trichogramma brassicae uses oviposition‐induced cues from Brussels sprouts to locate eggs of the cabbage white butterflies Pieris brassicae and Pieris rapae that differ in their egg‐laying behaviour. These plant cues are elicited by male‐derived anti‐aphrodisiac pheromones in the accessory reproductive gland (ARG) secretions of mated female butterflies. However, the closely related generalist species Trichogramma evanescens does not respond to Brussels sprout cues induced by the deposition of P. brassicae egg clutches. 3. Here we showed in two‐choice bioassays that T. evanescens wasps respond to Brussels sprout cues induced by (i) the deposition of single eggs by P. rapae, and (ii) the application of ARG secretions from either mated P. rapae females, or from virgin female butterflies in combination with P. rapae's anti‐aphrodisiac compound indole. The wasps only associatively learned to respond to Brussels sprout cues after applying indole alone by linking those cues with the presence of P. rapae eggs. 4. Our results indicate that Trichogramma wasps more commonly exploit oviposition‐induced plant cues to locate their host eggs. Generalist wasps show less specificity in their response than specialists and employ associative learning.  相似文献   

4.
5.
6.
Abstract Studies on the effect of parasitization by the endoparasitoid on host humoral immune reactions are carried out with the pupal endoparisitic wasp, Pteromalus puparum, and its host, Pieris rapae. Phenoloxidase (PO) activity of parasitized hosts hemolymph increased significantly at 12 h, day four and day five after parasitization. Hem‐agglutination activity of parasitized hosts hemolymph was always higher than that of wounded and unparasitized ones. Moreover, antibacterial activity of parasitized hosts hemolymph became more and more stronger, whilst wounded and unparasitized pupae only owned a weak antibacterial activity. It suggested that activities of humoral immune factors of Pieris rapae could be influenced to some degrees by P. puparum.  相似文献   

7.
Pteromalus puparum is a predominant endoparasitoid wasp of Pieris rapae. Its venom is the only active factor injected into host associated with oviposition. In this report, we explored whether the venom alone from this wasp affects the endocrine system of its host or not. We monitored the changes of hemolymph juvenile hormone (JH; only JH III detected), ecdysteroid, and juvenile hormone esterase activity (JHE) over 72 h in parasitized and venom‐microinjected P. rapae pupae. Non‐parasitized and PBS‐microinjected P. rapae served as controls. Results showed that JH titers were significantly higher in parasitized and venom‐microinjected pupae than that in control pupae during 24 to 72 h. After 12 h, JH titers were significantly promoted by parasitization and venom microinjection. JHE activities of non‐parasitized and PBS‐microinjected pupae were significantly higher than that of parasitized and venom‐microinjected pupae, which was with a peak at 12 h (parasitized pupae) or 24 h (venom‐microinjected pupae) during 6 to 48 and 12 to 36 h, respectively. The hemolymph titers of ecdysteroid in non‐parasitized and PBS‐microinjected pupae increased rapidly during 12 to 36 h with a peak at 36 h, and were higher than treatments before 48 h, while presenting a significant difference at 24 to 48 h between the treatments and controls. The results demonstrate that venom alone of this parasitoid wasp can disrupt its host's endocrine system. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
This paper reviews the literature concerning the ovipositional behaviour of Pieris rapae (small cabbage white butterfly) and where appropriate considers results from studies involving other butterflies. The paper considers searching behaviour, stimuli utilised in host plant finding and identification and concludes with a general section on the role of learning and prior experience in ovipositional behaviour.  相似文献   

9.
10.
1. The study reported here examined growth and developmental interactions between the gregarious larval koinobiont endoparasitoid Cotesia glomerata (Hymenoptera: Braconidae) and two of its hosts that vary considerably in growth potential: Pieris rapae and the larger P. brassicae (Lepidoptera: Pieridae). At pupation, healthy larvae of P. brassicae are over twice as large, in terms of fresh body mass, as those of P. rapae. 2. Clutch size of C. glomerata was manipulated artificially, and the relationship between parasitoid burden and the maximum weight of the parasitised host (= host–parasitoid complex) was measured. In both hosts, the maximum complex weight was correlated positively with parasitoid burden. Compared with unparasitised hosts, however, the growth of P. rapae was increased at significantly lower parasitoid burdens than in P. brassicae. Emerging wasp size was correlated negatively with parasitoid burden in both host species, whereas development time was less affected. 3. After larval parasitoid egress, the weight of the host carcass increased slightly, but not significantly, with parasitoid burden, although there was a strong correlation between the proportion of host mass consumed by C. glomerata larvae during development and parasitoid burden. 4. Clutch size was generally correlated positively with instar parasitised in both hosts, and greater in P. brassicae than in P. rapae. Sex ratios were much more female biased in L1 and L2 P. rapae than in all other host classes. Adult parasitoid size was correlated inversely with host instar at parasitism, and wasps emerging from P. brassicae were larger, and completed development faster, than conspecifics emerging from P. rapae. 5. The data reveal that parasitism by C. glomerata has profound species‐specific effects on the growth of both host species. Consequently, optimality models in which host quality is often based on host size at parasitism or unparasitised growth potential may have little utility in describing the development of gregarious koinobiont endoparasitoids. The results of this investigation are discussed in relation to the potential effectiveness of gregarious koinobionts in biological control programmes.  相似文献   

11.
Abstract Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mechanisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.  相似文献   

12.
Plants defend themselves against herbivores not only by a single trait but also by diversified multiple defense strategies. It remains unclear how these multiple defense mechanisms are effectively organized against herbivores. In this study, we focused on Brassicaceae plants, which have one of the most diversified secondary metabolites, glucosinolates (GSLs), as a defense against herbivores. By analyzing various defense traits including GSL profiles among 12 species (11 genera) of Brassicaceae plants, it is revealed that their defense strategies can be divided into three categories as multiple defenses. The GSL profiles differed between these three categories: (i) high nutritional level with long‐chain aliphatic GSLs; (ii) low nutritional level and high physical defenses with short‐chain aliphatic GSLs; and (iii) high nutritional level and low defense. The feeding experiment was conducted using two types of herbivores, Pieris rapae (Lepidoptera: Pieridae) as a specialist herbivore and the Eri silkmoth Samia cynthia ricini (Lepidoptera: Saturniidae) as a generalist, to assess the ability of each plant in multiple defense strategy. It was observed that the Eri silkmoth's performance differed according to which defense strategy it was exposed to. However, the growth rate of P. rapae did not vary among the three categories of defense strategy. These results suggest that the diversified defense strategies of Brassicaceae species have evolved to cope with diversified herbivores.  相似文献   

13.
We investigated the causes of among-plant variation in the parasitism rate of Pieris melete larvae (Lepidoptera: Pieridae) by the parasitoid fly Epicampocera succincta (Diptera: Tachinidae). The rate of parasitism by E. succincta was much higher on the bitter cress Cardamine appendiculata than on any other cruciferous plants. Adult female flies were found to be more attracted to C. appendiculata than to other cruciferous plants for searching for hosts. The parasitoid appeared to be unable to distinguish P. melete from an alternative host, Pieris rapae larvae, that coexisted with P. melete on most crucifer plants. Similarly, E. succincta failed to avoid P. rapae parasitized by the braconid wasp Cotesia glomerata. C. glomerata is a superior competitor to E. succincta if occupying the same host, killing the host before the E. succincta larva can grow and depriving the larva of the chance to survive. E. succincta attacked P. rapae larvae on most cruciferous plants, many of which were already occupied by C. glomerata; only on Cardamine appendiculata was E. succincta free from interspecific competition, because only P. melete was found on this particular plant. However, the strong preference for the hosts on C. appendiculata incurred heavy intraspecific competition among larvae on this plant, killing as great a proportion of larvae as interspecific competition did on the other plants. The balance between the strength of intraspecific competition on the preferred plant and of interspecific competition on the other plants appeared to maintain plant preference by E. succincta. Received: November 13, 2000 / Accepted: April 27, 2001  相似文献   

14.
A comparison was made of the dosage-mortality responses of larvae of Pieris brassicae and P. rapae to infection by P. brassicae granulosis virus (GV). Bioassays with first, second, third, and fourth-instar larvae of both species revealed a marked difference in susceptibility between instars and between species. Median lethal dosages (LD50s) for P. rapae larvae ranged from five capsules for the first instar to 662 capsules for the fourth instar. With P. brassicae, this range extended from 66 capsules to 2.3 × 107 capsules. The time-mortality responses of the two species were similar when fed virus dosages equivalent to an LD90. Median lethal times (LT50s) ranged from 5 days for first-instar larvae to 7–8 days for fourth-instar larvae. A comparison between a long-established laboratory stock of P. brassicae and a stock recently acquired from the field showed no significant difference in their susceptibility to GV. The implications of the pronounced species differences in susceptibility to GV infection are discussed in relation to the potential field control of P. rapae and P. brassicae.  相似文献   

15.
The large white butterfly (Pieris brassicae L) first invaded northernmost Japan from Siberia around 1994, and after a few years, began to expand its range. The wasp, Cotesia glomerata (L) parasitizes larvae of the small white butterfly (Pieris rapae crucivora Boisduval), a usual host in the same geographic area. Some Pieris brassicae larvae in Hokkaido have been parasitized by Cotesia glomerata, but the parasitism rate of Pieris brassicae larvae tends to be lower than that of Pieris rapae. To examine the process of parasitizing Pieris brassicae larvae, we observed how the parasitoid wasp responded to the host larvae on damaged leaves. Cotesia glomerata females tended to avoid Pieris brassicae larvae, and even when female wasps inserted their ovipositors into Pieris brassicae larvae, none laid eggs. The parasitoids obtained from Pieris rapae larvae failed to parasitize Pieris brassicae during the host-acceptance step.  相似文献   

16.
The mode of action of a diuretic hormone from pharate adult Manduca Sexta heads, which triggers fluid loss in M. sexta larvae and Pieris rapae adults, was studied. In vivo, Mas-DH (M. sexta diuretic hormone) decreased fluid absorption from larval recta, and increased levels of the second messenger cAMP in recta and Malpighian tubules (Mt) from larvae, and in fat body of larvae and adult M. sexta. In vitro, Mas-DH triggered minor changes in fluid loss from adult Mt, but did not affect levels of cAMP in Mt from larvae, pharate adults, or adults, though it elevated cAMP levels in fat body of these stages. © 1992 Wiley-Liss, Inc.  相似文献   

17.
The kinetic parameters of partially purified phenoloxidase (PO, EC. 1.14.18.1) from the 5th instar larvae of Pieris rapae (Lepidoptera) were determined, using L‐3, 4‐dihydroxyphenylalanine (L‐DOPA) as substrate. The optimal pH and temperature of the enzyme for the oxidation of L‐DOPA were determined to be at pH 7.0 and at 42°C, respectively. The enzyme was stable between pH 6.5 and 7.4 and at temperatures lower than 37°C. At pH 6.8 and 37°C, the Michaelis constant (Km) and maximal velocity (Vm) of the enzyme for the oxidation of L‐DOPA were determined to be 0.80 μmol/L and 1.84 μmol/ L/min, respectively. Tetra‐hexylresorcinol and 4‐dodecylresorcinol effectively inhibited activity of phenoloxidase and this inhibition was reversible and competitive, with the IC50 of 1.50 and 1.12 μmol/L, respectively. The inhibition constants were estimated to be 0.50 and 0.47 μmol/L, respectively.  相似文献   

18.
19.
Improving the diversity of farm systems or landscapes can lead to more effective biological control by providing refuge and alternative resources for colonising natural enemies. Within an experimental cabbage agroecosystem, we examined the effects of habitat management (i.e. herbicide use and cover crops) on pest populations and predator community structure, and report one of the first studies on the trophic links in this system using molecular gut-content analysis. In response to herbicide and cover crop management treatments designed to create different levels of habitat diversity, we quantified the abundance of two pests, Plutella xylostella Linnaeus (Lepidoptera: Plutellidae) and Pieris rapae Linnaeus (Lepidoptera: Pieridae), and predators. We designed species-specific primers to detect prey DNA in predators' guts. Pieris rapae were significantly more abundant in plots where cover crops were killed early in the season, and habitat management generated unique predator communities in response to weed management treatments. Thirty-five per cent of predators tested positive for prey DNA, and habitat management had interactive effects on predation of P. xylostella. Combined we found that habitat management has variable effects on natural enemy–pest interactions.  相似文献   

20.
Seven different strains of Beauveria bassiana were used in a bioassay on Pieris rapae larvae. The results showed that an B. bassiana strain showed relatively high pathogenicity towards P. rapae larvae. The adjusted mortality rate was 92.86 %, and the infection rate was 85.71 % in 10 days post inoculation. Molecular identification was performed to identify the unknown strain. Internal Transcribed Spacer sequence analysis showed that the polymerase chain reaction amplicon length of the unknown strain of Beauveria sp. was 573 bp, and sequence similarity to the known B. bassiana sequences in the NCBI database was 99 %. The B. bassiana strain was named Bb01. The changes of proteins and PPO of P. rapae larvae infected by B. bassiana Bb01 strain at different times was determined. The activity of PPO increased in 1–6 d and decreased in 7 d again after inoculation. The B. bassiana invaded into the insect body affected the balance of the proteins and PPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号