首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guo YY  Zhang J  Zheng YF  Yang J  Zhu XQ 《Mutation research》2011,721(2):184-191
Carbon nanomaterials have multiple applications in various areas. However, it has been suggested that exposure to nanoparticles may be a risk for the development of vascular diseases due to injury and dysfunction of the vascular endothelium. Therefore, in the present study, the cytotoxic and genotoxic effects of multi-wall carbon nanotubes (MWCNTs) on human umbilical vein endothelial cells (HUVECs) were evaluated. Optical and transmission electronic microscopy (TEM) study showed that MWCNTs were able to enter cells rapidly, distribute in the cytoplasm and intracellular vesicles and induce morphological changes. Exposure to MWCNTs reduced the viability of HUVECs, and induced apoptosis in HUVECs. Furthermore, MWCNTs could cause DNA damage as indicated by the formation of γH2AX foci. MWCNTs also affected cellular redox status, e.g., increasing intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as altering superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) levels. On the other hand, the free radical scavenger N-acetyl-l-cysteine (NAC) preincubation can inhibit the cytotoxic and genotoxic effects of MWCNTs. Taken together, these results demonstrated that MWCNTs could induce cytotoxic and genotoxic effects in HUVECs, probably through oxidative damage pathways.  相似文献   

2.
Multi-walled carbon nanotubes(MWCNTs) have wide application prospects but also exhibit notable biotoxicity that is tightly associated with macrophages. Macrophages simultaneously act as initiators and defenders in MWCNT-induced organ lesions,and targeting macrophages with MWCNTs may be a potential immunotherapy and oncotherapy approach. This review focuses on the impacts of MWCNTs on macrophages and further discusses the influence of MWCNT characteristics on their bioactivity.Based on existing studies, MWCNTs stimulate macrophage migration, induce secretion of various cytokines and activate inflammatory pathways in macrophages, especially NLRP3-mediated IL-1β production. This inflammatory state, together with the oxidative stress and cell membrane lesions induced by MWCNTs, contributes to decreased phagocytic ability and cell viability, which finally results in cell apoptosis and necrosis. A series of intracellular and systemic components, such as toll-like receptor, high-mobility group box 1, Rho-associated kinases, scavenger receptor and complement components, may be involved in the above-mentioned cell-MWCNT interactions. The characteristics of MWCNTs can influence their bioactivity in macrophages both mechanically and chemically. The size(length and/or diameter), functionalization, purification and even the experimental method can affect the influence of MWCNTs on macrophages, and a better understanding of these MWCNT characteristics may benefit utilization of this nanomaterial in associated nanomedical applications.  相似文献   

3.
Inflammation is a crucial component in the pathogenesis of many vascular diseases, such as atherosclerosis and diabetes. Inflammasomes are intracellular signalling complexes whose activation promotes inflammation. Nucleotide-binding domain and Leucine-rich repeat Receptor containing a Pyrin domain 3 (NLRP3) is a pattern recognition receptor (PRR) forming the best-known inflammasome. Disturbances in NLRP3 have been associated with multiple diseases. The purpose of this study was to explore the lysosomal destabilization-related NLRP3 inflammasome signaling pathway in human endothelial cells. In order to prime and activate NLRP3, human umbilical vein cells (HUVECs) were exposed to TNF-α and the lysosomal destructive agent Leusine-Leusine-O-Methylesther (Leu-Leu-OMe), respectively. A caspase-1 inhibitor was used to block caspase-1’s enzymatic function and an interleukin 1 receptor antagonist (IL-1RA) to prevent any possible secondary effects of IL-1β. Leu-Leu-OMe increased the expression of NLRP3, IL-1β, and IL-18 in HUVECs. Exposure to Leu-Leu-OMe significantly promoted the production of IL-6 and IL-8 in primed HUVECs; this effect was prevented by the pre-treatment of cells with an IL-1RA. Our results suggest that lysosomal destabilization activates the NLRP3 inflammasome pathway that promotes the production of IL-6 and IL-8 in an autocrine manner in HUVEC cells.  相似文献   

4.
5.
Ceramide, a key molecule in sphingolipid metabolism and a candidate second messenger, has been shown to inhibit the activity of phospholipase D. This biochemical pathway has been implicated to regulate cell differentiation, apoptosis and cellular senescence. Ceramide is generated in response to a number of extracellular inducers(for example: TNF, IL-1 and Fas ligands etc.), and acts as a second messenger to mediate many of the effects of these inducers. HUVECs are the monolayer cells located inside the vein wall and play an important role in the regulation of vein physiology and blood function. It has been reported that the C6 ceramide can induce senescence of WI-38 HDF and promote the activity of beta-galactosidase, but, C2 ceramide has no such effect. In this study, we investigated the role of C6 ceramide in the senescence of HUVECs. 10 mumol/ml of C6 ceramide treatment for more than 72 hours can induce morphological alterations (such as: enlarged, flattened and irregular cell body), cell cycle arrested at G1 phase and the expression of the senescent histochemical marker-beta-galactosidase in HUVECs. These results showed that C6 ceramide could induce senescence-like changes of HUVECs. The detection of reactive oxygen species(ROS) and the anti-oxidative ability of the cells showed that the C6 ceramide induced senescence-like cells still have normal ability of anti-oxidation. Further investigations are ongoing.  相似文献   

6.
There is growing evidence for sex and gender differences in the clinical manifestation and outcomes of human diseases. Human primary endothelial cells represent a useful cardiovascular model to study sexual dimorphisms at the cellular level. Here, we analyzed sexual dimorphisms of the secretome after serum starvation using human umbilical vein endothelial cells (HUVECs) from twin pairs of the opposite sex to minimize the impact of varying genetic background. HUVECs were starved for 5 and 16 h, respectively, and proteins of the cell culture supernatants were analyzed by tandem mass spectrometry. Altogether, 960 extracellular proteins were identified of which 683 were amendable to stringent quantification. Significant alterations were observed for 455 proteins between long-term and short-term starvation and the majority were similar in both sexes. Only 5 proteins showed significant sex-specific regulation between long-versus short-term starvation. Furthermore, 19 unique proteins with significant sexual dimorphisms at the same time points of serum starvation were observed. A larger number of proteins, for example tissue factor inhibitor 2 (TFPI2), displayed higher levels in the supernatants of females compared to male cells after long term serum starvation that might point to higher adaptation capacity of female cells. The overall results demonstrate that male and female cells differ in their secretome.  相似文献   

7.

Background

Sialic acids represent common terminal residues on numerous mammalian glycoconjugates, thereby influencing e.g. lumen formation in developing blood vessels. Interestingly, besides monosialylated also polysialylated glycoconjugates are produced by endothelial cells. Polysialic acid (polySia) is formed in several organs during embryonal and postnatal development influencing, for instance, cell migration processes. Furthermore, the function of cytokines like basic fibroblast growth factor (bFGF) is modulated by polySia.

Results

In this study, we demonstrated that human umbilical vein endothelial cells (HUVEC) also secrete polysialylated glycoconjugates. Furthermore, an interaction between polySia and vascular endothelial growth factor (VEGF) was observed. VEGF modulates like bFGF the migration of HUVEC. Since both growth factors interact with polySia, we examined, if polySia modulates the migration of HUVEC. To this end scratch assays were performed showing that the migration of HUVEC is stimulated, when polySia was degraded.

Conclusions

Since polySia can interact with bFGF as well as VEGF and the degradation of polySia resulted in an increased cell migration capacity in the applied scratch assay, we propose that polySia may trap these growth factors influencing their biological activity. Thus, polySia might also contribute to the fine regulation of physiological processes in endothelial cells.
  相似文献   

8.
Angiogenesis is a complex multi-step process, where in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels often do not resemble vessels in vivo. Here we demonstrate an optimized in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis, and importantly the vessels display patent intercellular lumens surrounded by polarized EC. Vessels can be easily observed by phase-contrast and time-lapse microscopy, and recovered in pure form for downstream applications.  相似文献   

9.
Using a parallel-plate flow-chamber and confocal laser scanning microscopy (CLSM), we studied the distribution and temporal changes in intracellular Ca2+ concentration ([Ca2+]i) in migrating HUVECs stimulated by shear-stress. In the presence or absence of ATP, shear-stress (10 dyne/cm2) caused morphological change and migration of individual HUVECs in the random direction. After 120 minute exposure to shear-stress, 70% of the cells migrated in the direction of flow, whereas, as many as 30% of the cells migrated to the upstream against flow. A nonspecific plasma membrane Ca2+ channel blocker, Ni2+, abolished such responses markedly, suggesting that Ca2+ influx may be essential for shear-stress dependent morphological change and migration of HUVECs. Analysis of [Ca2+]i distribution revealed the appearance of localized [Ca2+]i elevation inside lamellipodium formed in the direction of cell migration. The localized rise in [Ca2+]i might be closely related with morphological change to regulate the direction of cell migration induced by shear-stress.  相似文献   

10.
Previous studies have shown that thrombomodulin (TM) on endothelial cells is down-regulated by endotoxin, interleukin-1 beta (IL-1 beta), and tumor necrosis factor (TNF). This loss of anti-coagulant potential is thought to be related to the hypercoagulable state in sepsis, inflammation, and cancer. The current studies describe up-regulation of TM in human umbilical vein endothelial cells (HUVECs) by several compounds as judged by increased surface cofactor activity, surface TM antigen, and TM mRNA levels. Surface TM activity was increased by active phorbol esters (10(-8) M, 24-48 h), analogs of cAMP (1-10 mM, 4 h), and forskolin (10(-5) M, 24-48 h). Up-regulation of TM in HUVECs by 4 beta-phorbol 12-myristate 13-acetate (PMA) and dibutyryl cAMP (dBcAMP) was due to de novo synthesis of TM protein resulting from increased TM mRNA levels. The results suggest that protein kinase C and protein kinase A may be involved in cellular regulatory mechanisms for TM expression. In addition, PMA effects on surface TM activity are biphasic, with an initial reduction followed by a significant enhancement. Hence, we propose that compounds capable of increasing intracellular cAMP concentrations in HUVECs may be useful in preventing thrombosis by increasing the anti-thrombotic properties of endothelial cells.  相似文献   

11.
Xanthones bearing different functionalities, namely 1-hydroxyxanthone (1), 3-hydroxyxanthone (2), 1,4-dihydroxyxanthone (3), 2,6-dihydroxyxanthone (4), 1,2-diacetoxyxanthone (5), 2,6-diacetoxyxanthone (6), 3-methoxyxanthone (7), 1,3,7-trimethoxyxanthone (8) and 1,5-dihydroxy-6-methoxyxanthone (9) were synthesised and examined for their effect on nicotinamide adenine dinucleotide phosphate (NADPH)-catalysed liver microsomal lipid peroxidation and on tumour necrosis factor-alpha (TNF-alpha) induced expression of intercellular adhesion moledule-1 (ICAM-1) on endothelial cells, with a view to establish structure-activity relationship. Hydroxy- and acetoxyxanthones showed potent inhibitory effects on NADPH-catalysed lipid peroxidation and TNF-alpha induced expression of ICAM-1 on endothelial cells.  相似文献   

12.
Different coumarin/thiocoumarin derivatives, that is, 7-hydroxy-4-methylcoumarin, 7,8-dihydroxy-4-methylcoumarin, 7-acetoxy-4-methylcoumarin, 7,8-diacetoxy-4-methylcoumarin, 7-hydroxy-4-methylthiocoumarin, 7,8-dihydroxy-4-methylthiocoumarin, 7-acetoxy-4-methylthiocoumarin and 7,8-diacetoxy-4-methylthiocoumarin were synthesized and evaluated for their effects on TNF-alpha induced expression of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and on NADPH-catalyzed rat liver microsomal lipid peroxidation with a view to identify modulators for expression of cell adhesion molecules and to establish structure-activity relationship. We found that dihydroxy and diacetoxy derivatives of thiocoumarin were more potent in comparison to the corresponding coumarin derivatives in inhibiting TNF-alpha-induced expression of ICAM-1. However, coumarin derivatives were found to be more potent in comparison to the corresponding thiocoumarins in inhibiting microsomal lipid peroxidation. We have also tested the intermediate compounds 7,8-dibenzyloxy-4-methylcoumarin and 7,8-dibenzyloxy-4-methylthiocoumarin for their inhibitory activity on TNF-alpha-induced ICMA-1 expression. We found that dibenzyloxy-4-methylthiocoumarin is better than dibenzyloxy-4-methylcoumarin. The mechanisms underlying the observed activities of coumarins and thiocoumarins have been discussed with reference to their structures. Such structure-function relationship studies may help in developing molecules with better anti-inflammatory and anti-oxidant activities.  相似文献   

13.
目的:探讨内皮抑素对人脐静脉内皮细胞(HUVEC)及体外微血管模型的作用及其可能的机制。方法:1.MTT法检测不同浓度(10~50μg/ml)内皮抑素作用72h和30μg/ml内皮抑素作用不同时间(24~72h)对HUVEC细胞的影响;2、电镜观察HUVEC细胞超微结构的变化;3.光镜下观察内皮抑素(30μg/ml)对体外人造血管模型的影响。结果:1.MTT检测显示,内皮抑素(20~50μg/ml)能抑制HUVEC细胞的增殖(P〈0.05,P〈0.01),具有剂量-时间依赖性。2.电镜观察,HUVEC细胞内皮抑素作用组均出现凋亡改变。3.光镜观察,内皮抑素能抑制新生血管的形成,并能破坏新生的血管网。结论:内皮抑素能抑制人脐静脉血管内皮细胞HUVEC的增殖,并具有时间一剂量依赖性,机制可能为诱导细胞凋亡。提示,内皮抑素可能通过诱导HUVEC的凋亡抑制其增殖,并能破坏新生的血管。内皮抑素可能以此抑制机体肿瘤的生长与转移。  相似文献   

14.
111In-Labeled eosinophils from mildly eosinophilic subjects have been examined for their capacity to adhere to cultured human umbilical vein endothelial cells. In assay buffer alone, 32.0% +/- 2.6 eosinophils adhered spontaneously to endothelial cells. Platelet-activating factor (PAF) (1-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) at concentrations as low as 10(-9) M increased this adherence to a level of 46.7% +/- 2.0. The effects of PAF were confirmed to be on eosinophils by parallel adherence assays done on serum-coated plastic plates where comparably enhanced adhesion of the eosinophils was seen. Lyso-PAF, the biologically inactive precursor/metabolite of PAF, had no stimulatory properties. FMLP caused an increase in eosinophil adherence, comparable to that of PAF, but only at high concentrations (10(-6) to 10(-7) M). Further examination of eosinophil subpopulations separated on metrizamide gradients indicated that "hypodense" eosinophils had a significantly higher ability to adhere spontaneously to endothelial cells than "normal" dense eosinophils, (35.5% +/- 4.2 vs 23.8% +/- 2.5, respectively) and could be stimulated with PAF to higher levels, although the magnitude of stimulation was similar for both populations. A mouse mAb TS1/18 to the common beta-subunit of the Mac-1 cell surface glycoprotein complex (CDw18) reduced by up to 94.6% the PAF-induced increase in adherence, but had no effect on the spontaneous adhesion. Eosinophils were also shown by cytofluorography to be capable of binding the TS1/18 antibody on their cell surface, and in some experiments to exhibit an increased expression of the Mac-1 complex on stimulation with PAF. These studies indicate that eosinophils are capable of binding to endothelial cells in culture, that PAF is a potent stimulator of eosinophil adherence, and that the Mac-1 complex has a critical role in this adhesion process.  相似文献   

15.
Recent studies revealed the existence of opioid receptors on human polymorphonuclear leukocytes (hPMN) and reported the effects of endogenous opioids on hPMN migration and adherence on glass or serum coated glass. Extending these studies, two different assay systems served to quantify the two basic events of adherence: attachment and spreading. hPMN in suspension were allowed to settle under the influence of beta-endorphin on human umbilical vein endothelial cells. After 30 and 240 sec the number of attached cells was enhanced 2.5-fold. Studying the spreading of cells, beta-endorphin increased the area 1.5-fold. Since adherence precedes the migration of hPMN through the endothelial layer towards foci of inflammation, the results suggest a modulatory role of endogenous opioids in defence mechanisms.  相似文献   

16.
Carbon nanotubes (CNTs) are single- or multi-cylindrical graphene structures that possess diameters of a few nanometers, while the length can be up to a few micrometers. These could have unusual toxicological properties, in that they share intermediate morphological characteristics of both fibers and nanoparticles. To date, no detailed study has been carried out to determine the effect of length on CNT cytotoxicity. In this paper, we investigated the activation of the human acute monocytic leukemia cell line THP-1 in vitro and the response in subcutaneous tissue in vivo to CNTs of different lengths. We used 220 nm and 825 nm-long CNT samples for testing, referred to as "220-CNTs" and "825-CNTs", respectively. 220-CNTs and 825-CNTs induced human monocytes in vitro, although the activity was significantly lower than that of microbial lipopeptide and lipopolysaccharide, and no activity appeared following variation in the length of CNTs. On the other hand, the degree of inflammatory response in subcutaneous tissue in rats around the 220-CNTs was slight in comparison with that around the 825-CNTs. These results indicated that the degree of inflammation around 825-CNTs was stronger than that around 220-CNTs since macrophages could envelop 220-CNTs more readily than 825-CNTs. However, no severe inflammatory response such as necrosis, degeneration or neutrophil infiltration in vivo was observed around both CNTs examined throughout the experimental period.  相似文献   

17.
18.
Diesel exhaust particles (DEP) have been proved to induce serious pulmonary injury, among which lethal pulmonary edema has been assumed to be mediated by vascular endothelial cell damage. In the present study, we investigated the cytotoxic mechanism of DEP on human pulmonary artery endothelial cells focusing on the role of active oxygen species. Endothelial cell viability was assessed by WST-8, a novel tetrazolium salt. Nitric oxide (NO) production was measured by using a new fluorescence indicator, diaminofluorescein-2 (DAF-2). Organic compounds in DEP were extracted by dichloromethane and methanol. DEP-extracts damaged endothelial cells under both subconfluent and confluent conditions. The DEP-extract-induced cytotoxicity was markedly reduced by treatment with SOD, catalase, N-(2-mercaptopropionyl)-glycine (MPG), or ebselen (a selenium-containing compound with glutathione peroxidase-like activity). Thus superoxide, hydrogen peroxide, and other oxygen-derived free radicals are likely to be implicated in DEP-extract-induced endothelial cell damage. Moreover, L-NAME and L-NMA, inhibitors of NO synthase, also attenuated DEP-extract-induced cytotoxicity, while sepiapterin, the precursor of tetrahydrobiopterin (BH(4), a NO synthase cofactor) interestingly enhanced DEP-extract-induced cell damage. These findings suggest that NO is also involved in DEP-extract-mediated cytotoxicity, which was confirmed by direct measurement of NO production. These active oxygen species, including peroxynitrite, may explain the mechanism of endothelial cell damage upon DEP exposure during the early stage.  相似文献   

19.
We examined the role of prostaglandin D(2) (PGD(2)) in the expression of vascular cell adhesion molecule-1 (VCAM)-1 following interleukin-1beta (IL-1) stimulation in human umbilical vein endothelial cells (HUVEC) transfected with lipocaline-type PGD(2) synthase (L-PGDS) genes. HUVEC were isolated from human umbilical vein and incubated with 20 U/ml IL-1 and various concentrations of authentic PGD(2). The isolated HUVEC were also transfected with L-PGDS genes by electroporation. The L-PGDS-transfected HUVEC were used to investigate the role of endogenous PGD(2) in IL-1-stimulated VCAM-1 biosynthesis. We also used an anti-PGD(2) antibody to examine whether an intracrine mechanism was involved in VCAM-1 production. PGD(2) and VCAM-1 levels were determined by radio- and cell surface enzyme-immunoassay, respectively. VCAM-1 mRNA was assessed by RT-PCR. IL-1-stimulated VCAM-1 expression by HUVEC was dose-dependently inhibited by authentic PGD(2). L-PGDS gene-transfected HUVEC produced more PGD(2) than HUVEC transfected with the reporter gene alone. IL-1 induced increases in VCAM-1 expression in HUVEC transfected with reporter genes alone. However, this effect was significantly attenuated in the case of IL-1 stimulation of HUVEC transfected with L-PGDS genes, and accompanied by an apparent suppression of VCAM-1 mRNA expression. Neutralization of extracellular PGD(2) by anti-PGD(2)-specific antibody influenced neither VCAM-1 mRNA expression nor VCAM-1 biosynthesis. In conclusion, HUVEC transfected with L-PGDS genes showed increased PGD(2) synthesis. This increase was associated with attenuation of both VCAM-1 expression and VCAM-1 mRNA expression. The results suggest that endogenous PGD(2) decreases VCAM-1 expression and VCAM-1 mRNA expression, probably through an intracrine mechanism.  相似文献   

20.
Exchange protein activated by cyclic AMP (EPAC1) suppresses multiple inflammatory actions in vascular endothelial cells (VECs), partly due to its ability to induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene, the protein product of which inhibits interleukin 6 (IL6) signalling through the JAK/STAT3 pathway. Here, for the first time, we use the non-cyclic nucleotide EPAC1 agonist, I942, to determine its actions on cellular EPAC1 activity and cyclic AMP-regulated gene expression in VECs. We demonstrate that I942 promotes EPAC1 and Rap1 activation in HEK293T cells and induces SOCS3 expression and suppresses IL6-stimulated JAK/STAT3 signalling in HUVECs. SOCS3 induction by I942 in HUVECs was blocked by the EPAC1 antagonist, ESI-09, and EPAC1 siRNA, but not by the broad-spectrum protein kinase A (PKA) inhibitor, H89, indicating that I942 regulates SOCS3 gene expression through EPAC1. RNA sequencing was carried out to further identify I942-regulated genes in HUVECs. This identified 425 I942-regulated genes that were also regulated by the EPAC1-selective cyclic AMP analogue, 007, and the cyclic AMP-elevating agents, forskolin and rolipram (F/R). The majority of genes identified were suppressed by I942, 007 and F/R treatment and many were involved in the control of key vascular functions, including the gene for the cell adhesion molecule, VCAM1. I942 and 007 also inhibited IL6-induced expression of VCAM1 at the protein level and blocked VCAM1-dependent monocyte adhesion to HUVECs. Overall, I942 represents the first non-cyclic nucleotide EPAC1 agonist in cells with the ability to suppress IL6 signalling and inflammatory gene expression in VECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号