首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or P53‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or P53‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or Sirt1‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.  相似文献   

3.
Both SIRT1 and UVA radiation are involved in cellular damage processes such as apoptosis, senescence and ageing. MicroRNAs (miRNAs) have been reported to be closely related to UV radiation, as well as to SIRT1. In this study, we investigated the connections among SIRT1, UVA and miRNA in human skin primary fibroblasts. Our results showed that UVA altered the protein level of SIRT1 in a time point–dependent manner. Using miRNA microarray, bioinformatics analysis, we found that knocking down SIRT1 could cause up‐regulation of miR‐27a‐5p and the latter could down‐regulate SMAD2, and these results were verified by qRT‐PCR or Western blot. Furthermore, UVA radiation (5 J/cm2), knocking down SIRT1 or overexpression of miR‐27a‐5p led to increased expression of MMP1, and decreased expressions of COL1 and BCL2. We also found additive impacts on MMP1, COL1 and BCL2 under the combination of UVA radiation + Sirtinol (SIRT1 inhibitor), or UVA radiation + miR‐27a‐5p mimic. SIRT1 activator resveratrol could reverse damage changes caused by UVA radiation. Besides, absent of SIRT1 or overexpression of miR‐27a‐5p increased cell apoptosis and induced cell arrest in G2/M phase. Taken together, these results demonstrated that UVA could influence a novel SIRT1‐miR‐27a‐5p‐SMAD2‐MMP1/COL1/BCL2 axis in skin primary fibroblasts, and may provide potential therapeutic targets for UVA‐induced skin damage.  相似文献   

4.
Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)‐induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF‐α‐induced cellular senescence in EPCs, as indicated by reduced senescence‐associated β‐galactosidase activity and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked TNF‐α‐induced superoxide levels, NADPH oxidase activity, and microRNA‐21 (miR‐21) and p16INK4a synthesis. Kallistatin prevented TNF‐α‐mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR‐34a synthesis, whereas miR‐34a overexpression abolished kallistatin‐induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR‐34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ‐induced aortic senescence, oxidative stress, and miR‐34a and miR‐21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild‐type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR‐34 or sir‐2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR‐34, but stimulated sir‐2.1 and sod‐3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR‐34a‐SIRT1 pathway.  相似文献   

5.
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.  相似文献   

6.
Dental stem cell proliferation and osteoblast differentiation are key cellular processes involved in periodontitis diseases. Researchers have found that SIRT1 (sirtuin 1, silent mating type information regulation 2 homolog 1) and microRNAs play a pivotal role in the process, but a clear underlying mechanism has not been determined. In this study, the has‐miR‐22‐3p that target SIRT1 was predicted by TargetScan. Luciferase reporter assay was used to confirm that SIRT1 is the direct target of miR‐22‐3p. Importantly, miR‐22‐3p was revealed to control SIRT1 in periodontal ligament stem cell (PDLSC) and to regulate the proliferation and differentiation of PDLSC by SIRT1 silencing. Furthermore, we detected the induction of miR‐22‐3p expression by nicotinamide treatment on PDLSC. Induction of PDLSC proliferation and differentiation by nicotinamide treatment was blocked by miR‐22‐3p knockdown. These results suggested that the effect of nicotinamide on PDLSC is through miR‐22‐3p. In addition, miR‐22‐3p also upregulated the expression levels of the inflammatory cytokines tumor necrosis factor‐α, interleukin‐1β (IL‐1β), and IL‐8 in PDLSC through SIRT1 pathway and downregulated the expression of TLR‐2 and TLR‐4. miR‐22‐3p is a new target either for the treatment of periodontitis or the improvement of inflammation caused by orthodontics.  相似文献   

7.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

8.
E2F regulation is essential for normal cell cycle progression. Therefore, it is not surprising that squamous cell carcinoma cell lines (SCC) overexpress E2F1 and exhibit deregulated E2F activity when compared with normal keratinocytes. Indeed, deliberate E2F1 deregulation has been shown to induce hyperplasia and skin tumor formation. In this study, we report on a dual role for E2F as a mediator of keratinocyte proliferation and modulator of squamous differentiation. Overexpression of E2F isoforms in confluent primary keratinocyte cultures resulted in suppression of differentiation-associated markers. Moreover, we found that the DNA binding domain and the trans-activation domain of E2F1 are important in mediating suppression of differentiation. Use of a dominant/negative form of E2F1 (E2F d/n) found that E2F inhibition alone is sufficient to suppress the activity of proliferation-associated markers but is not capable of inducing differentiation markers. However, if the E2F d/n is expressed in differentiated keratinocytes, differentiation marker activity is further induced, suggesting that E2F may act as a modulator of squamous differentiation. We therefore examined the effects of E2F d/n in a differentiation-insensitive SCC cell line. We found that treatment with the differentiating agent, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or expression of E2F d/n alone had no effect on differentiation markers. However, a combination of E2F d/n + TPA induced the expression of differentiation markers. Combined, these data indicate that E2F may play a key role in keratinocyte differentiation. These data also illustrate the unique potential of anti-E2F therapies in arresting proliferation and inducing differentiation of SCCs.  相似文献   

9.
M. Li  M. Yu  C. Liu  H. Zhu  X. He  S. Peng  J. Hua 《Cell proliferation》2013,46(2):223-231

Objectives

Recent lines of evidence have indicated that miR‐34c can play important roles in regulation of the cell cycle, cell senescence and apoptosis of mouse and human tumour cells, spermatogenesis, and male germ‐cell apoptosis. However, there is little information on the effects of miR‐34c on proliferation and apoptosis of livestock male germ cells. The dairy goat is a convenient domestic species for biological investigation and application. The purpose of this study was to investigate the effects of miR‐34c on apoptosis and proliferation of dairy goat male germline stem cells (mGSCs), as well as to determine the relationship between p53 and miR‐34c in this species.

Materials and methods

Morphological observation, miRNA in situ hybridisation (ISH), bromodeoxyuridine staining, flow cytometry, quantitative‐RT‐PCR (Q‐RT‐PCR) and western blotting were utilized to ascertain apoptosis and proliferation of mGSCs, through transfection of miR‐34c mimics (miR‐34c), miR‐34c inhibitor (anti‐miR‐34c), miR‐34c mimics and inhibitors co‐transfected (mixture) compared to control groups.

Results

Results manifested that miR‐34c over‐expression promoted mGSCs apoptosis and suppressed their proliferation. Simultaneously, a variety of apoptosis‐related gene expression was increased while some proliferation‐related genes were downregulated. Accordingly, miR‐34c promoted apoptosis in mGSCs and reduced their proliferation; moreover, expression of miR‐34c was p53‐dependent.

Conclusions

This study is the first to provide a model for study of miRNAs and mechanisms of proliferation and apoptosis in male dairy goat germ cells.
  相似文献   

10.
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR‐145‐5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR‐145‐5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR‐145‐5p knockdown OPCs. Further, knockdown of miR‐145‐5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL‐specific genes targeted by miR‐145‐5p that exhibited upregulation with miR‐145‐5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR‐145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR‐145‐5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR‐145‐5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR‐145‐5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as‐yet‐unidentified mechanisms. These findings clarify the need for differential regulation of miR‐145‐5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR‐145‐5p is dysregulated.  相似文献   

11.
12.
Embryonic stem cells (ESCs) have the capacity to differentiate into nearly all sorts of cell types, including germ cells, which were regarded as one type of highly specialized cells in mammals, taking the responsibility of transferring genetic materials to the next generation. Studies on induction differentiation of murine embryonic stem cells (mESCs) into male germ cells, but with a low efficiency, basic reason is that the regulation mechanism of germ cell development in mammals is still unclear. miRNA might play an important role in spermatogenesis in mammals. In this study, several miRNAs, which might be related to spermatogenesis, were initially selected and detected in the mouse tissues by semi‐polymerase chain reaction (PCR) and quantitative real time (qRT)‐PCR to find a testis‐specific miRNA. To study its effect on mESCs differentiation into male germ cells, miR‐34c mimics were synthesized and pri‐miR‐34c‐GFP plasmid was constructed, transfected into mESCs and combined with retinoic acid induction. The effects of miR‐34c were analysed by morphology, alkaline phosphatase staining, qRT‐PCR_and immunofluorescent staining. The results showed that miR‐34c promoted mESCs differentiation into male germ‐like cells, to some extent. Then miR‐34c targeted genes were predicted by bioinformatics; Retinoic acid receptor gamma (RARg) was selected, and two dual‐luciferase reporter vectors contained the normal and mutated 3′untranslated region of RARg were constructed, respectively. By miRNA mimics and vector co‐transfection experiment, the predicted target gene‐RARg was confirmed. In conclusion, we found a mammalian male germ cell specific miRNA—miR‐34c, and it might be pivotal in mESCs differentiation into male germ cells through its target—RARg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T‐cell‐expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR‐100, miR‐99a and miR‐10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR‐99a cooperated with miR‐150 to repress the expression of the Th17‐promoting factor mTOR. The comparably low expression of miR‐99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR‐150 could only repress Mtor in the presence of miR‐99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs.  相似文献   

14.
To understand the relationship between permanent cell cycle exit and differentiation the immortalized keratinocyte cell line, SIK and the squamous cell carcinoma, SCC9 were compared during differentiation induced by anchorage‐deprivation. The SIK cells when placed in suspension culture promptly lost almost all ability to reinitiate growth by 2 days concomitantly expressing the differentiation specific proteins, transglutaminase (TGK) and involucrin. These cells rapidly underwent G1 cell cycle arrest with complete disappearance of phosphorylated RB. In contrast SCC9 cells neither showed TGK expression nor increase in involucrin. They decreased their colony‐forming ability much more slowly, which coordinated well with a gradual decrease in phosphorylated RB, demonstrating the significant resistance to loss of colony‐forming ability and cell cycle exit. In accordance, cyclin D1, a positive regulator of cyclin‐dependent kinase (CDK) 4/6 which phosphorylates RB decreased drastically in anchorage deprived SIK but not in SCC9 cells. Endogenous cyclin D1 knockdown in SCC9 cells by siRNA enhanced loss of the colony‐forming ability during anchorage‐deprivation. Conversely enforced expression of cyclin D1 in SIK cells and in another immortalized keratinocyte cell line, HaCaT, partly prevented loss of their colony‐forming abilities. Cyclin D1 overexpression antagonized Keratin 10 expression in suspended HaCaT cells. The result demonstrates the importance of cyclin D1 down regulation for proper initiation of keratinocyte differentiation. J. Cell. Biochem. 106: 63–72, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
16.
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2O2‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p16INK4a and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked H2O2‐induced superoxide formation, NADPH oxidase levels and VCAM‐1, ICAM‐1, IL‐6 and miR‐34a synthesis. Kallistatin reversed H2O2‐mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)‐2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti‐senescence and anti‐oxidant effects were attributed to SIRT1‐mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up‐regulated Let‐7g, whereas Let‐7g inhibitor abolished kallistatin's effects on miR‐34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium‐specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild‐type mouse endothelial cells, and H2O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let‐7g, SIRT1, eNOS, catalase and SOD‐1 mRNA levels, and elevated miR‐34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let‐7g‐mediated miR‐34a‐SIRT1‐eNOS pathway.  相似文献   

17.
The aim of our study was to investigate the effects of miR‐133a‐3p on human oral squamous cell carcinoma (OSCC) cells by regulating gene COL1A1. OSCC tissues, adjacent tongue epithelial tissues, the immortalized oral epithelial cell line HIOEC, and OSCC cell lines (CAL‐27, TCA‐8113, SCC‐4, SCC‐9, and SCC‐15) were used in this research. Quantitative real‐time PCR (RT‐qPCR) was employed to determine the expression of miR‐133a‐3p and COL1A1. Dual luciferase reporter gene assay and Western blot were applied to verify the binding relationship between miR‐133a‐3p and COL1A1. Functional assays were also conducted in this study, including CCK‐8 assay, colony formation assay, flow cytometry analysis as well as Transwell assay. MiR‐133a‐3p was found low‐expressed both in OSCC tissues and cells lines compared with normal tissues and cell line, respectively, whereas COL1A1 was just the opposite. The over‐expression of miR‐133a‐3p or the down‐regulation of COL1A1 suppressed the proliferation, invasion, and mitosis of OSCC cells, whereas simultaneous down‐regulation of miR‐133a‐3p and up‐regulation of COL1A1 led to no significant alteration of cell activities. MiR‐133a‐3p could inhibit the proliferation and migration of OSCC cells through directly targeting COL1A1 and reducing its expression. J. Cell. Biochem. 119: 338–346, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
19.
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号