共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jahandideh S Sarvestani AS Abdolmaleki P Jahandideh M Barfeie M 《Journal of theoretical biology》2007,249(4):785-790
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone. 相似文献
3.
4.
Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines
In the post-genome era, the prediction of protein function is one of the most demanding tasks in the study of bioinformatics. Machine learning methods, such as the support vector machines (SVMs), greatly help to improve the classification of protein function. In this work, we integrated SVMs, protein sequence amino acid composition, and associated physicochemical properties into the study of nucleic-acid-binding proteins prediction. We developed the binary classifications for rRNA-, RNA-, DNA-binding proteins that play an important role in the control of many cell processes. Each SVM predicts whether a protein belongs to rRNA-, RNA-, or DNA-binding protein class. Self-consistency and jackknife tests were performed on the protein data sets in which the sequences identity was < 25%. Test results show that the accuracies of rRNA-, RNA-, DNA-binding SVMs predictions are approximately 84%, approximately 78%, approximately 72%, respectively. The predictions were also performed on the ambiguous and negative data set. The results demonstrate that the predicted scores of proteins in the ambiguous data set by RNA- and DNA-binding SVM models were distributed around zero, while most proteins in the negative data set were predicted as negative scores by all three SVMs. The score distributions agree well with the prior knowledge of those proteins and show the effectiveness of sequence associated physicochemical properties in the protein function prediction. The software is available from the author upon request. 相似文献
5.
Background
Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we developed various SVM modules for predicting DNA-binding domains and proteins. All models were trained and tested on multiple datasets of non-redundant proteins. 相似文献6.
MOTIVATION: With the development of DNA microarray technology, scientists can now measure the expression levels of thousands of genes simultaneously in one single experiment. One current difficulty in interpreting microarray data comes from their innate nature of 'high-dimensional low sample size'. Therefore, robust and accurate gene selection methods are required to identify differentially expressed group of genes across different samples, e.g. between cancerous and normal cells. Successful gene selection will help to classify different cancer types, lead to a better understanding of genetic signatures in cancers and improve treatment strategies. Although gene selection and cancer classification are two closely related problems, most existing approaches handle them separately by selecting genes prior to classification. We provide a unified procedure for simultaneous gene selection and cancer classification, achieving high accuracy in both aspects. RESULTS: In this paper we develop a novel type of regularization in support vector machines (SVMs) to identify important genes for cancer classification. A special nonconvex penalty, called the smoothly clipped absolute deviation penalty, is imposed on the hinge loss function in the SVM. By systematically thresholding small estimates to zeros, the new procedure eliminates redundant genes automatically and yields a compact and accurate classifier. A successive quadratic algorithm is proposed to convert the non-differentiable and non-convex optimization problem into easily solved linear equation systems. The method is applied to two real datasets and has produced very promising results. AVAILABILITY: MATLAB codes are available upon request from the authors. 相似文献
7.
As one important post-translational modification of prokaryotic proteins, pupylation plays a key role in regulating various biological processes. The accurate identification of pupylation sites is crucial for understanding the underlying mechanisms of pupylation. Although several computational methods have been developed for the identification of pupylation sites, the prediction accuracy of them is still unsatisfactory. Here, a novel bioinformatics tool named IMP–PUP is proposed to improve the prediction of pupylation sites. IMP–PUP is constructed on the composition of k-spaced amino acid pairs and trained with a modified semi-supervised self-training support vector machine (SVM) algorithm. The proposed algorithm iteratively trains a series of support vector machine classifiers on both annotated and non-annotated pupylated proteins. Computational results show that IMP–PUP achieves the area under receiver operating characteristic curves of 0.91, 0.73, and 0.75 on our training set, Tung's testing set, and our testing set, respectively, which are better than those of the different error costs SVM algorithm and the original self-training SVM algorithm. Independent tests also show that IMP–PUP significantly outperforms three other existing pupylation site predictors: GPS–PUP, iPUP, and pbPUP. Therefore, IMP–PUP can be a useful tool for accurate prediction of pupylation sites. A MATLAB software package for IMP–PUP is available at https://juzhe1120.github.io/. 相似文献
8.
Background
Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. 相似文献9.
Prediction of beta-turns with learning machines 总被引:3,自引:0,他引:3
The support vector machine approach was introduced to predict the beta-turns in proteins. The overall self-consistency rate by the re-substitution test for the training or learning dataset reached 100%. Both the training dataset and independent testing dataset were taken from Chou [J. Pept. Res. 49 (1997) 120]. The success prediction rates by the jackknife test for the beta-turn subset of 455 tetrapeptides and non-beta-turn subset of 3807 tetrapeptides in the training dataset were 58.1 and 98.4%, respectively. The success rates with the independent dataset test for the beta-turn subset of 110 tetrapeptides and non-beta-turn subset of 30,231 tetrapeptides were 69.1 and 97.3%, respectively. The results obtained from this study support the conclusion that the residue-coupled effect along a tetrapeptide is important for the formation of a beta-turn. 相似文献
10.
Background
Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. 相似文献11.
Background
The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. 相似文献12.
G-protein coupled receptors (GPCRs) represent one of the most important classes of drug targets for pharmaceutical industry and play important roles in cellular signal transduction. Predicting the coupling specificity of GPCRs to G-proteins is vital for further understanding the mechanism of signal transduction and the function of the receptors within a cell, which can provide new clues for pharmaceutical research and development. In this study, the features of amino acid compositions and physiochemical properties of the full-length GPCR sequences have been analyzed and extracted. Based on these features, classifiers have been developed to predict the coupling specificity of GPCRs to G-protelns using support vector machines. The testing results show that this method could obtain better prediction accuracy. 相似文献
13.
Secondary structure prediction with support vector machines 总被引:8,自引:0,他引:8
MOTIVATION: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. METHODS: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. RESULTS: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07 +/- 0.26% with a segment overlap (Sov) score of 73.32 +/- 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods. 相似文献
14.
Modelling ecological niches with support vector machines 总被引:2,自引:1,他引:2
15.
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly
β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural
classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy.
The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements
in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification
gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines
may still need to be further improved in future investigation. 相似文献
16.
Vinay Nair Monalisa Dutta Sowmya S Manian Ramya Kumari S Valadi K Jayaraman 《Bioinformation》2013,9(9):481-484
Penicillin-Binding Proteins are peptidases that play an important role in cell-wall biogenesis in bacteria and thus maintaining
bacterial infections. A wide class of β-lactam drugs are known to act on these proteins and inhibit bacterial infections by disrupting
the cell-wall biogenesis pathway. Penicillin-Binding proteins have recently gained importance with the increase in the number of
multi-drug resistant bacteria. In this work, we have collected a dataset of over 700 Penicillin-Binding and non-Penicillin Binding
Proteins and extracted various sequence-related features. We then created models to classify the proteins into Penicillin-Binding
and non-binding using supervised machine learning algorithms such as Support Vector Machines and Random Forest. We obtain a
good classification performance for both the models using both the methods. 相似文献
17.
Background
Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies. 相似文献18.
19.