首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved algorithm for clustering gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Recent advancements in microarray technology allows simultaneous monitoring of the expression levels of a large number of genes over different time points. Clustering is an important tool for analyzing such microarray data, typical properties of which are its inherent uncertainty, noise and imprecision. In this article, a two-stage clustering algorithm, which employs a recently proposed variable string length genetic scheme and a multiobjective genetic clustering algorithm, is proposed. It is based on the novel concept of points having significant membership to multiple classes. An iterated version of the well-known Fuzzy C-Means is also utilized for clustering. RESULTS: The significant superiority of the proposed two-stage clustering algorithm as compared to the average linkage method, Self Organizing Map (SOM) and a recently developed weighted Chinese restaurant-based clustering method (CRC), widely used methods for clustering gene expression data, is established on a variety of artificial and publicly available real life data sets. The biological relevance of the clustering solutions are also analyzed.  相似文献   

2.
Cluster analysis aims at finding subsets (clusters) of a given set of entities, which are homogeneous and/or well separated.  相似文献   

3.

Background  

Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering.  相似文献   

4.
Chang  Luyao  Li  Fan  Niu  Xinzheng  Zhu  Jiahui 《Cluster computing》2022,25(4):3005-3017

To better collect data in context to balance energy consumption, wireless sensor networks (WSN) need to be divided into clusters. The division of clusters makes the network become a hierarchical organizational structure, which plays the role of balancing the network load and prolonging the life cycle of the system. In clustering routing algorithm, the pros and cons of clustering algorithm directly affect the result of cluster division. In this paper, an algorithm for selecting cluster heads based on node distribution density and allocating remaining nodes is proposed for the defects of cluster head random election and uneven clustering in the traditional LEACH protocol clustering algorithm in WSN. Experiments show that the algorithm can realize the rapid selection of cluster heads and division of clusters, which is effective for node clustering and is conducive to equalizing energy consumption.

  相似文献   

5.
Microarray technology facilitates the monitoring of the expression levels of thousands of genes over different experimental conditions simultaneously. Clustering is a popular data mining tool which can be applied to microarray gene expression data to identify co-expressed genes. Most of the traditional clustering methods optimize a single clustering goodness criterion and thus may not be capable of performing well on all kinds of datasets. Motivated by this, in this article, a multiobjective clustering technique that optimizes cluster compactness and separation simultaneously, has been improved through a novel support vector machine classification based cluster ensemble method. The superiority of MOCSVMEN (MultiObjective Clustering with Support Vector Machine based ENsemble) has been established by comparing its performance with that of several well known existing microarray data clustering algorithms. Two real-life benchmark gene expression datasets have been used for testing the comparative performances of different algorithms. A recently developed metric, called Biological Homogeneity Index (BHI), which computes the clustering goodness with respect to functional annotation, has been used for the comparison purpose.  相似文献   

6.
Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering methods allow for analysis of the behavior of subsets of metabolites under different experimental conditions. In addition, the results are easily visualized. In this paper we introduce a two-mode clustering method based on a genetic algorithm that uses a criterion that searches for homogeneous clusters. Furthermore we introduce a cluster stability criterion to validate the clusters and we provide an extended knee plot to select the optimal number of clusters in both experimental and metabolite modes. The genetic algorithm-based two-mode clustering gave biological relevant results when it was applied to two real life metabolomics data sets. It was, for instance, able to identify a catabolic pathway for growth on several of the carbon sources. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. A. Hageman and R. A. van den Berg contributed equally to this paper.  相似文献   

7.
An ensemble framework for clustering protein-protein interaction networks   总被引:3,自引:0,他引:3  
MOTIVATION: Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. RESULTS: In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

8.
9.
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.  相似文献   

10.
11.
12.
MOTIVATION: This paper introduces the application of a novel clustering method to microarray expression data. Its first stage involves compression of dimensions that can be achieved by applying SVD to the gene-sample matrix in microarray problems. Thus the data (samples or genes) can be represented by vectors in a truncated space of low dimensionality, 4 and 5 in the examples studied here. We find it preferable to project all vectors onto the unit sphere before applying a clustering algorithm. The clustering algorithm used here is the quantum clustering method that has one free scale parameter. Although the method is not hierarchical, it can be modified to allow hierarchy in terms of this scale parameter. RESULTS: We apply our method to three data sets. The results are very promising. On cancer cell data we obtain a dendrogram that reflects correct groupings of cells. In an AML/ALL data set we obtain very good clustering of samples into four classes of the data. Finally, in clustering of genes in yeast cell cycle data we obtain four groups in a problem that is estimated to contain five families. AVAILABILITY: Software is available as Matlab programs at http://neuron.tau.ac.il/~horn/QC.htm.  相似文献   

13.

Background  

Understanding gene regulatory networks has become one of the central research problems in bioinformatics. More than thirty algorithms have been proposed to identify DNA regulatory sites during the past thirty years. However, the prediction accuracy of these algorithms is still quite low. Ensemble algorithms have emerged as an effective strategy in bioinformatics for improving the prediction accuracy by exploiting the synergetic prediction capability of multiple algorithms.  相似文献   

14.
With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective clustering method has been compared with that of several other microarray clustering algorithms for three publicly available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for multiple cancer subtypes.  相似文献   

15.
Che D  Hasan MS  Wang H  Fazekas J  Huang J  Liu Q 《Bioinformation》2011,7(6):311-314
Genomic islands (GIs) are genomic regions that are originally transferred from other organisms. The detection of genomic islands in genomes can lead to many applications in industrial, medical and environmental contexts. Existing computational tools for GI detection suffer either low recall or low precision, thus leaving the room for improvement. In this paper, we report the development of our Ensemble algorithm for Genomic Island Detection (EGID). EGID utilizes the prediction results of existing computational tools, filters and generates consensus prediction results. Performance comparisons between our ensemble algorithm and existing programs have shown that our ensemble algorithm is better than any other program. EGID was implemented in Java, and was compiled and executed on Linux operating systems. EGID is freely available at http://www5.esu.edu/cpsc/bioinfo/software/EGID.  相似文献   

16.
An algorithm for clustering cDNA fingerprints   总被引:6,自引:0,他引:6  
Clustering large data sets is a central challenge in gene expression analysis. The hybridization of synthetic oligonucleotides to arrayed cDNAs yields a fingerprint for each cDNA clone. Cluster analysis of these fingerprints can identify clones corresponding to the same gene. We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques. Unlike other methods, it does not assume that the clusters are hierarchically structured and does not require prior knowledge on the number of clusters. In tests with simulated libraries the algorithm outperformed the Greedy method and demonstrated high speed and robustness to high error rate. Good solution quality was also obtained in a blind test on real cDNA fingerprints.  相似文献   

17.
Validating clustering for gene expression data   总被引:24,自引:0,他引:24  
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality.  相似文献   

18.
Increasingly, high-dimensional genomics data are becoming available for many organisms.Here, we develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a computational framework that integrates the co-association networks of individual species by utilizing the orthology relationships of genes between species. It outputs optimized modules that are fundamentally cross-species, which can either be conserved or species-specific. We demonstrate the application of OrthoClust using the RNA-Seq expression profiles of Caenorhabditis elegans and Drosophila melanogaster from the modENCODE consortium. A potential application of cross-species modules is to infer putative analogous functions of uncharacterized elements like non-coding RNAs based on guilt-by-association.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-8-r100) contains supplementary material, which is available to authorized users.  相似文献   

19.
SUMMARY: VISDA (Visual Statistical Data Analyzer) is a caBIG analytical tool for cluster modeling, visualization and discovery that has met silver-level compatibility under the caBIG initiative. Being statistically principled and visually interfaced, VISDA exploits both hierarchical statistics modeling and human gift for pattern recognition to allow a progressive yet interactive discovery of hidden clusters within high dimensional and complex biomedical datasets. The distinctive features of VISDA are particularly useful for users across the cancer research and broader research communities to analyze complex biological data. AVAILABILITY: http://gforge.nci.nih.gov/projects/visda/  相似文献   

20.
In recent years the use of fuzzy clustering techniques in medical diagnosis is increasing steadily, because of the effectiveness of fuzzy clustering techniques in recognizing the systems in the medical database to help medical experts in diagnosing diseases. This study focuses on clustering lung cancer dataset into three types of cancers which are leading cause of cancer death in the world. This paper invents effective fuzzy clustering techniques by incorporating hyper tangent kernel function, and entropy methods for analyzing the Lung Cancer database to assist physician in diagnosing lung cancer. Further this paper proposes an algorithm to initialize the cluster centers to speed up the process of the algorithms. The effectiveness of the proposed methods has been proved through the experimental works on synthetic dataset, Wine dataset and IRIS dataset in terms of running time, number of iterations, visual segmentation effects and clustering accuracy. And then this paper proposes the proposed method on Lung cancer database to divide it into three types of lung cancers. In addition this paper proves the superiority of the proposed methods by comparing the obtained classes with reference classes through Error Matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号