首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Colorectal cancer (CRC) is the third most common malignance. Although great efforts have been made to understand the pathogenesis of CRC, the underlying mechanisms are still unclear. It is now clear that more than 90% of the total genome is actively transcribed, but lack of protein‐coding potential. The massive amount of RNA can be classified as housekeeping RNAs (such as ribosomal RNAs, transfer RNAs) and regulatory RNAs (such as microRNAs [miRNAs], PIWI‐interacting RNA [piRNAs], tRNA‐derived stress‐induced RNA, tRNA‐derived small RNA [tRFs] and long non‐coding RNAs [lncRNAs]). Small non‐coding RNAs are a group of ncRNAs with the length no more than 200 nt and they have been found to exert important regulatory functions under many pathological conditions. In this review, we summarize the biogenesis and functions of regulatory sncRNAs, such as miRNAs, piRNA and tRFs, and highlight their involvements in cancers, particularly in CRC.  相似文献   

5.
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.  相似文献   

6.
7.
Long non‐coding RNAs (lncRNAs) have been validated to play important role in multiple cancers, including non‐small cell lung cancer (NSCLC). In present study, our team investigate the biologic role of SNHG15 in the NSCLC tumorigenesis. LncRNA SNHG15 was significantly upregulated in NSCLC tissue samples and cells, and its overexpression was associated with poor prognosis of NSCLC patients. In vitro, loss‐of‐functional cellular experiments showed that SNHG15 silencing significantly inhibited the proliferation, promoted the apoptosis, and induced the cycle arrest at G0//G1 phase. In vivo, xenograft assay showed that SNHG15 silencing suppressed tumor growth of NSCLC cells. Besides, SNHG15 silencing decreased CDK14 protein expression both in vivo and vitro. Bioinformatics tools and luciferase reporter assay confirmed that miR‐486 both targeted the 3′‐UTR of SNHG15 and CDK14 and was negatively correlated with their expression levels. In summary, our study conclude that the ectopic overexpression of SNHG15 contribute to the NSCLC tumorigenesis by regulating CDK14 protein via sponging miR‐486, providing a novel insight for NSCLC pathogenesis and potential therapeutic strategy for NSCLC patients.  相似文献   

8.
9.
10.
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI). Long non‐coding RNA ANRIL (lncRNA‐ANRIL) has been reported to regulate endothelial functions in cardiovascular diseases. This study was to determine the role of lncRNA‐ANRIL in Akt regulation and cardiac functions after MI. Human umbilical vein endothelial cells (HUVECs) were exposed to oxygen‐glucose deprivation (OGD) to mimic in vivo ischaemia. The MI model in mice was induced by ligating left anterior descending coronary artery. OGD remarkably decreased lncRNA‐ANRIL expression level, reduced the phosphorylated levels of Akt and eNOS proteins, and inhibited NO release and cell viability, which were duplicated by shRNA‐mediated gene knockdown of lncRNA‐ANRIL. Conversely, all these effects induced by OGD were abolished by adenovirus‐mediated overexpression of lncRNA‐ANRIL in HUVECs. Further, OGD impaired cell migrations and tube formations in HUVECs, which were reversed by lncRNA‐ANRIL overexpression or Akt up‐regulation. RNA immunoprecipitation analysis indicated that the affinity of lncRNA‐ANRIL to Akt protein was increased in OGD‐treated cells. In animal studies, adenovirus‐mediated lncRNA‐ANRIL overexpression increased the phosphorylated levels of Akt and eNOS, promoted post‐ischaemic angiogenesis and improved heart functions in mice with MI surgery. LncRNA‐ANRIL regulates Akt phosphorylation to improve endothelial functions, which promotes angiogenesis and improves cardiac functions in mice following MI. In this perspective, targeting lncRNA‐ANRIL/Akt may be considered to develop a drug to treat angiogenesis‐related diseases.  相似文献   

11.
Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial malignancy that exhibits high incidence worldwide. In diverse human cancers, the long non‐coding RNA (lncRNA) highly up‐regulated in liver cancer (HULC) is aberrantly expressed, but how HULC affects OSCC development and progression has remained mostly unknown. We report that HULC was abnormally up‐regulated in oral cancer tissues and OSCC cell lines, and that suppression of HULC expression in OSCC cells not only inhibited the proliferation, drug tolerance, migration and invasion of the cancer cells, but also increased their apoptosis rate. Notably, in a mouse xenograft model, HULC depletion reduced tumorigenicity and inhibited the epithelial‐to‐mesenchymal transition process. Collectively, our findings reveal a crucial role of the lncRNA HULC in regulating oral cancer carcinogenesis and tumour progression, and thus suggest that HULC could serve as a novel therapeutic target for OSCC.  相似文献   

12.
13.
14.
15.
The current study elucidated the role of a long non‐coding RNA (lncRNA), FOXD2‐AS1, in the pathogenesis of hepatocellular carcinoma (HCC) and the regulatory mechanism underlying FOXD2‐AS1/miR‐150‐5p/transmembrane protein 9 (TMEM9) signalling in HCC. Microarray analysis was used for preliminary screening of candidate lncRNAs in HCC tissues. qRT‐PCR and Western blot analyses were used to detect the expression of FOXD2‐AS1. Cell proliferation assays, luciferase assay and RNA immunoprecipitation were performed to examine the mechanism by which FOXD2‐AS1 mediates sorafenib resistance in HCC cells. FOXD2‐AS1 and TMEM9 were significantly decreased and miR‐150‐5p was increased in SR‐HepG2 and SR‐HUH7 cells compared with control parental cells. Overexpression of FOXD2‐AS1 increased TMEM9 expression and overcame the resistance of SR‐HepG2 and SR‐HUH7 cells. Conversely, knockdown of FOXD2‐AS1 decreased TMEM9 expression and increased the sensitivity of HepG2 and Huh7 cells to sorafenib. Our data also demonstrated that FOXD2‐AS1 functioned as a sponge for miR‐150‐5p to modulate TMEM9 expression. Taken together, our findings revealed that FOXD2‐AS1 is an important regulator of TMEM9 and contributed to sorafenib resistance. Thus, FOXD2‐AS1 may serve as a therapeutic target against sorafenib resistance in HCC.  相似文献   

16.
17.
Our present work was aimed to study on the regulatory role of MALAT1/miR‐145‐5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX‐resistant PCa cell lines (DU‐145‐DTX and PC‐3‐DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT‐PCR analysis was performed to measure MALAT1 expression in DTX‐sensitive and DTX‐resistant tissues/cells. The human DTX‐resistant cell lines DU145‐PTX and PC3‐DTX were established as in vitro cell models, and the expression of MALAT1, miR‐145‐5p and AKAP12 was manipulated in DTX‐sensitive and DTX‐resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual‐luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR‐145‐5p, as well as between miR‐145‐5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR‐145‐5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up‐regulated in clinical DTX‐resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR‐145‐5p as a target of MALAT1. MiR‐145‐5p overexpression in PC3‐DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR‐145‐5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX‐chemoresistance in vivo. There was an lncRNA MALAT1/miR‐145‐5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.  相似文献   

18.
19.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号