首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

2.

Background  

The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content.  相似文献   

3.
In 10 years, the monocots have gone from being one of the least studied and most phylogenetically misunderstood groups of the angiosperms to one of the best characterized. Based on analyses of seven genes representing all three genomes, the following clades have high bootstrap support: Acorales (with the single genus Acorus) is sister to the rest of the monocots, followed successively by Alismatales (including Araceae and Tofieldiaceae), Petrosaviales, Dioscoreales/Pandanales, Liliales, Asparagales, and finally a polytomy of Arecales, Commelinales/Zingiberales, Dasypogonaceae, and Poales. Many of these results also have support from at least some morphological data, but some are unique to the trees created from DNA sequence data. Monocots have been shown in molecular clock studies to be at least 140 million years old, and all major clades and most families date to well before the end of the Cretaceous. More data are required to clarify the positions of the remaining unclearly placed orders, Asparagles, Liliales, and Arecales, as well as Dasypogonaceae. More sequences from the nuclear and mitochondrial genomes are also needed to complement those from the plastid genome, which is the most sampled and thus far most pattern-rich.  相似文献   

4.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

5.
TEM investigation of sieve-element plastids in three species of Trithuria, the sole genus of the small aquatic family Hydatellaceae, show that P-type plastids are absent from this genus and only starch-accumulating (S-type) sieve-element plastids are present. This discovery is consistent with the recent transfer of Hydatellaceae from the highly derived monocot order Poales (grasses and their allies) to the early-divergent angiosperm order Nymphaeales (waterlilies) based on molecular phylogenetic data. Species of Poales consistently possess P2-subtype plastids, in common with other monocots, but only S-type plastids are present in Nymphaeales. The results confirm that Hydatellaceae do not belong in monocots. Optimisation of the two major types of sieve-element plastid onto a recent phylogeny of early-divergent angiosperms confirms that S-type is the primitive form and indicates that P-type sieve-element plastids have evolved more than once in angiosperms.  相似文献   

6.
Malpighiales are one of the most diverse orders of angiosperms. Molecular phylogenetic studies based on combined sequences of coding genes allowed to identify major lineages but hitherto were unable to resolve relationships among most families. Spacers and introns of the chloroplast genome have recently been shown to provide strong signal for inferring relationships among major angiosperm lineages and within difficult clades. In this study, we employed sequence data of the petD group II intron and the petB-petD spacer for a set of 64 Malpighiales taxa, representing all major lineages. Celastrales and Oxalidales served as outgroups. Sequence alignment was straightforward due to frequent microstructural changes with easily recognizable motifs (e.g., simple sequence repeats), and well defined mutational hotspots. The secondary structure of the complete petD intron was calculated for Idesia polycarpa as an example. Domains I and IV are the most length variable parts of the intron. They contain terminal A/T-rich stem-loop elements that are suggested to elongate independently in different lineages with a slippage mechanism earlier reported from the P8 stem-loop of the trnL intron. Parsimony and Bayesian analyses of the petD dataset yielded trees largely congruent with results from earlier multigene studies but statistical support of nodes was generally higher. For the first time a deep node of the Malpighiales backbone, a clade comprising Achariaceae, Violaceae, Malesherbiaceae, Turneraceae, Passifloraceae, and a Lacistemataceae–Salicaceae lineage received significant statistical support (83% JK, 1.00 PP) from plastid DNA sequences.  相似文献   

7.
The sequence of the plastid genome of Amborella trichopoda, the putative sister to all other extant angiosperms, was recently reported (Molecular Biology and Evolution 20: 1499-1505). Goremykin et al. used sequence data for 61 plastid genes from Amborella and 12 other embryophytes in phylogenetic analyses and concluded that Amborella is not the sister to the remaining flowering plants; the monocots instead occupy this position. The authors attributed their results, which differ substantially from all recent phylogenetic analyses of angiosperms, to the increased character sampling (30?017 nucleotides in their aligned matrix) in their analysis relative to published studies that included fewer genes but more taxa. We hypothesized that the difference in topology is not due to limited character sampling in previous studies but to limited taxon sampling in the analysis by Goremykin et al. To test this, we conducted a series of phylogenetic analyses using a three-gene, 12 (or more)-taxon data set to evaluate the topological effects of (i) including three vs. 61 genes for (nearly) the same set of taxa, (ii) analyzing different codon positions, (iii) substituting representatives of other basal lineages for Amborella, (iv) replacing the grasses used to represent the monocots with other monocots, selected either for their phylogenetic position or randomly, and (v) adding other basal taxa-Nymphaea, Austrobaileya, magnoliids, and monocots-to the 12-taxon data set. Our results demonstrate that the "monocots basal" topology obtained by Goremykin et al. is not due to increased character sampling of the plastid genome; their topology was obtained using only two plastid genes or two plastid genes and one nuclear gene. This topology was also retained when either Nymphaea or Austrobaileya was substituted for Amborella, demonstrating that any of the three basal lineages will attach to Calycanthus for lack of any other close branch. Furthermore, the "monocots basal" topology is not robust to changes in sampling of monocots. Simply adding Oncidium, for example, places Amborella sister to the other angiosperms. Thus, limited taxon sampling, focusing on organisms with complete genome sequences, can lead to artifactual results.  相似文献   

8.

Background  

Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA).  相似文献   

9.
The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions.  相似文献   

10.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

11.
Despite numerous studies, there is no single accepted hypothesis of eutherian ordinal relationships. Among the least understood mammalian orders is the group Insectivora. Currently, molecular and morphological data are in conflict over the possible monophyly of the living members of Insectivora (lipotyphlans), and the relationships within the group remain largely unresolved. One of the primary criticisms concerning molecular analyses is the noticeable lack of data from a well-sampled group of lipotyphlan insectivores. The mitochondrial 12S rRNA gene has been widely used to resolve interordinal and intraordinal relationships across a variety of mammalian taxa. This study compares 118 complete mammalian 12S rRNA sequences, representing all of the 18 eutherian orders and 3 metatherian orders, and includes as well taxa from each of the six families of lipotyphlan insectivores. Insectivoran lineages are thought to have diverged concurrently with the general radiation of mammalian orders. This study suggests that the 12S rRNA sequences lack the ability to resolve relationships extending into this period. This would explain the polyphyly, unusual affinities, and low support derived in this and other studies employing 12S rRNA sequences to diagnose relationships among eutherian orders. The results of these analyses suggest that even extensive taxon sampling is insufficient to provide well supported groups among eutherian orders. Additional genes and species sampling will be necessary to elucidate whether the Insectivora form a monophyletic group.  相似文献   

12.
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.  相似文献   

13.

Background  

Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505), whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots.  相似文献   

14.
Phylogenetic relationships among the five key angiosperm lineages,Ceratophyllum,Chloranthaceae,eudicots,magnoliids,and monocots,have resisted resolution despite several large-scale analyses sampling taxa and characters extensively and using various analytical methods.Meanwhile,compatibility methods,which were explored together with parsimony and likelihood methods during the early development stage of phylogenetics.have been greatly under-appreciated and not been used to analyze the massive amount of sequence data to reconstruct thye basal angiosperm phylogeny.In this study,we used a compatibility method on a data set of eight genes (mitochondrial atp1,matR,and nad5,plastid atpB,marK,rbcL,and rpoC2,and nuclear 18S rDNA)gathered in an earlier study.We selected two sets of characters that are compatible with more of the other characters than a random character would be with at probabilities of pM<0.1 and p<0.5 respectively.The resulting data matrices were subjected to parsimony and likelihood bootstrap analyses.Our unrooted parsimony analyses showed that Ceratophyllum was immediately related to eudicots,this larger lineage was immediately related to magnoliids,and monocots were closely related to Chloranthaceae.All these relationships received 76%-96% bootstrap support.A likelihood analysis of the 8 gene pM<0.5 compatible site matrix recovered the same topology but with low support.Likelihood analyses of other compatible site matrices produced different topologies that were all weakly supported.The topology reconstructed in the parsimony analyses agrees with the one recovered in the previous study using both parsimony and likelihood methods when no character was eliminated.Parts of this topology have also been recovered in several earlier studies.Hence,this topology plausibly reflects the true relationships among the five key angiosperm lineages.  相似文献   

15.
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.  相似文献   

16.
Past phylogenetic studies of the monocot order Alismatales left several higher‐order relationships unresolved. We addressed these uncertainties using a nearly complete genus‐level sampling of whole plastid genomes (gene sets representing 83 protein‐coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter‐ and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister‐group of the rest of the order, one likelihood analysis indicated a contrasting Araceae‐sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral‐state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.  相似文献   

17.
Recent phylogenetic analyses of molecular data have supported different hypotheses of relationships among Cornales,Ericales,and core asterids.Such hypotheses have implications for the evolution of important morphological and embryological features of asterids.In this study we generated plastid genome-scale data of Davidia (Cornales) and Franklinia (Ericales) and combined them with published sequence data of eudicots.Our maximum parsimony,maximum likelihood,and Bayesian analyses generated strongly supported and congruent phylogenetic relationships among the three major lineages of the asterids.Cornales diverges first in asterids; Ericales is sister to the core asterids.Adding two more taxa helps mitigate long branch attraction in parsimony analyses.Sampling 26-28 plastid protein-coding genes may provide satisfactory resolution and support for relationships of eudicots including basal lineages of asterids.  相似文献   

18.

Background and Aims

Zingiberales comprise a clade of eight tropical monocot families including approx. 2500 species and are hypothesized to have undergone an ancient, rapid radiation during the Cretaceous. Zingiberales display substantial variation in floral morphology, and several members are ecologically and economically important. Deep phylogenetic relationships among primary lineages of Zingiberales have proved difficult to resolve in previous studies, representing a key region of uncertainty in the monocot tree of life.

Methods

Next-generation sequencing was used to construct complete plastid gene sets for nine taxa of Zingiberales, which were added to five previously sequenced sets in an attempt to resolve deep relationships among families in the order. Variation in taxon sampling, process partition inclusion and partition model parameters were examined to assess their effects on topology and support.

Key Results

Codon-based likelihood analysis identified a strongly supported clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)), sister to (Musaceae, (Lowiaceae, Strelitziaceae)), collectively sister to Heliconiaceae. However, the deepest divergences in this phylogenetic analysis comprised short branches with weak support. Additionally, manipulation of matrices resulted in differing deep topologies in an unpredictable fashion. Alternative topology testing allowed statistical rejection of some of the topologies. Saturation fails to explain observed topological uncertainty and low support at the base of Zingiberales. Evidence for conflict among the plastid data was based on a support metric that accounts for conflicting resampled topologies.

Conclusions

Many relationships were resolved with robust support, but the paucity of character information supporting the deepest nodes and the existence of conflict suggest that plastid coding regions are insufficient to resolve and support the earliest divergences among families of Zingiberales. Whole plastomes will continue to be highly useful in plant phylogenetics, but the current study adds to a growing body of literature suggesting that they may not provide enough character information for resolving ancient, rapid radiations.  相似文献   

19.
The early diversification of angiosperms is thought to have been a rapid process, which may complicate phylogenetic analyses of early angiosperm relationships. Plastid and nuclear phylogenomic studies have raised several conflicting hypotheses regarding overall angiosperm phylogeny, but mitochondrial genomes have been largely ignored as a relevant source of information. Here we sequenced mitochondrial genomes from 18 angiosperms to fill taxon-sampling gaps in Austrobaileyales, magnoliids, Chloranthales, Ceratophyllales, and major lineages of eudicots and monocots. We assembled a data matrix of 38 mitochondrial genes from 107 taxa to assess how well mitochondrial genomic data address current uncertainties in angiosperm relationships. Although we recovered conflicting phylogenies based on different data sets and analytical methods, we also observed congruence regarding deep relationships of several major angiosperm lineages: Chloranthales were always inferred to be the sister group of Ceratophyllales, Austrobaileyales to mesangiosperms, and the unplaced Dilleniales was consistently resolved as the sister to superasterids. Substitutional saturation, GC compositional heterogeneity, and codon-usage bias are possible reasons for the noise/conflict that may impact phylogenetic reconstruction; and angiosperm mitochondrial genes may not be substantially affected by these factors. The third codon positions of the mitochondrial genes appear to contain more parsimony-informative sites than the first and second codon positions, and therefore produced better resolved phylogenetic relationships with generally strong support. The relationships among these major lineages remain incompletely resolved, perhaps as a result of the rapidity of early radiations. Nevertheless, data from mitochondrial genomes provide additional evidence and alternative hypotheses for exploring the early evolution and diversification of the angiosperms.  相似文献   

20.
There has been increasing interest in integrating a regional tree of life with community assembly rules in the ecological research. This raises questions regarding the impacts of taxon sampling strategies at the regional versus global scales on the topology. To address this concern, we constructed two trees for the nitrogen-fixing clade: (i) a genus-level global tree including 1023 genera; and (ii) a regional tree comprising 303 genera, with taxon sampling limited to China. We used the supermatrix approach and performed maximum likelihood analyses on combined matK, rbcL, and trnL-F plastid sequences. We found that the topology of the global and the regional tree of the N-fixing clade were generally congruent. However, whereas relationships among the four orders obtained with the global tree agreed with the accepted topology obtained in focused analyses with more genes, the regional topology obtained different relationships, albeit weakly supported. At a finer scale, the phylogenetic position of the family Myricaceae was found to be sensitive to sampling density. We expect that internal support throughout the phylogeny could be improved with denser taxon sampling. The taxon sampling approach (global vs. regional) did not have a major impact on fine-level branching patterns of the N-fixing clade. Thus, a well-resolved phylogeny with relatively dense taxon sampling strategy at the regional scale appears, in this case, to be a good representation of the overall phylogenetic pattern and could be used in ecological research. Otherwise, the regional tree should be adjusted according to the correspondingly reliable global tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号