首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
EMBO J 32: 2905–2919 10.1038/emboj.2013.199; published online September032013Some B cells of the adaptive immune system secrete polyreactive immunoglobulin G (IgG) in the absence of immunization or infection. Owing to its limited affinity and specificity, this natural IgG is thought to play a modest protective role. In this issue, a report reveals that natural IgG binds to microbes following their opsonization by ficolin and mannan-binding lectin (MBL), two carbohydrate receptors of the innate immune system. The interaction of natural IgG with ficolins and MBL protects against pathogenic bacteria via a complement-independent mechanism that involves IgG receptor FcγRI expressing macrophages. Thus, natural IgG enhances immunity by adopting a defensive strategy that crossovers the conventional boundaries between innate and adaptive microbial recognition systems.The adaptive immune system generates protective somatically recombined antibodies through a T cell-dependent (TD) pathway that involves follicular B cells. After recognizing antigen through the B-cell receptor (BCR), follicular B cells establish a cognate interaction with CD4+ T follicular helper (TFH) cells and thereafter either rapidly differentiate into short-lived IgM-secreting plasmablasts or enter the germinal centre (GC) of lymphoid follicles to complete class switch recombination (CSR) and somatic hypermutation (SHM) (Victora and Nussenzweig, 2012). CSR from IgM to IgG, IgA and IgE generates antibodies with novel effector functions, whereas SHM provides the structural correlate for the induction of affinity maturation (Victora and Nussenzweig, 2012). Eventually, this canonical TD pathway generates long-lived bone marrow plasma cells and circulating memory B cells that produce protective class-switched antibodies capable to recognize specific antigens with high affinity (Victora and Nussenzweig, 2012).In addition to post-immune monoreactive antibodies, B cells produce pre-immune polyreactive antibodies in the absence of conventional antigenic stimulation (Ehrenstein and Notley, 2010). These natural antibodies form a vast and stable repertoire that recognizes both non-protein and protein antigens with low affinity (Ehrenstein and Notley, 2010). Natural antibodies usually emerge from a T cell-independent (TI) pathway that involves innate-like B-1 and marginal zone (MZ) B cells. These are extrafollicular B-cell subsets that rapidly differentiate into short-lived antibody-secreting plasmablasts after detecting highly conserved microbial and autologus antigens through polyreactive BCRs and nonspecific germline-encoded pattern recognition receptors (Pone et al, 2012; Cerutti et al, 2013).The most studied natural antibody is IgM, a pentameric complement-activating molecule with high avidity but low affinity for antigen (Ehrenstein and Notley, 2010). In addition to promoting the initial clearance of intruding microbes, natural IgM regulates tissue homeostasis, immunological tolerance and tumour surveillance (Ochsenbein et al, 1999; Zhou et al, 2007; Ehrenstein and Notley, 2010). Besides secreting IgM, B-1 and MZ B cells produce IgG and IgA after receiving CSR-inducing signals from dendritic cells (DCs), macrophages and neutrophils of the innate immune system (Cohen and Norins, 1966; Cerutti et al, 2013). In humans, certain natural IgG and IgA are moderately mutated and show some specificity, which may reflect the ability of human MZ B cells to undergo SHM (Cerutti et al, 2013). Yet, natural IgG and IgA are generally perceived as functionally quiescent.In this issue, Panda et al show that natural IgG bound to a broad spectrum of bacteria with high affinity by cooperating with ficolin and MBL (Panda et al, 2013), two ancestral soluble lectins of the innate immune system (Holmskov et al, 2003). This binding involved some degree of specificity, because it required the presence of ficolin or MBL on the microbial surface as well as lower pH and decreased calcium concentration in the extracellular environment as a result of infection or inflammation (see Figure 1).Open in a separate windowFigure 1Ficolins and MBL are produced by hepatocytes and various cells of the innate immune system and opsonize bacteria after recognizing conserved carbohydrates. Low pH and calcium concentrations present under infection-inflammation conditions promote the interaction of ficolin or MBL with natural IgG on the surface of bacteria. The resulting immunocomplex is efficiently phagocytosed by macrophages through FcγR1 independently of the complement protein C3, leading to the clearance of bacteria.Ficolins and MBL are soluble pattern recognition receptors that opsonize microbes after binding to glycoconjugates through distinct carbohydrate recognition domain (CRD) structures (Holmskov et al, 2003). While ficolins use a fibrinogen domain, MBL and other members of the collectin family use a C-type lectin domain attached to a collagen-like region (Holmskov et al, 2003). Similar to pentraxins, ficolins and MBL are released by innate effector cells and hepatocytes, and thus may have served as ancestral antibody-like molecules prior to the inception of the adaptive immune system (Holmskov et al, 2003; Bottazzi et al, 2010). Of note, MBL and the MBL-like complement protein C1q are recruited by natural IgM to mediate complement-dependent clearance of autologous apoptotic cells and microbes (Holmskov et al, 2003; Ehrenstein and Notley, 2010). Panda et al found that a similar lectin-dependent co-optation strategy enhances the protective properties of natural IgG (Panda et al, 2013).By using bacteria and the bacterial glycan N-acetylglicosamine, Panda et al show that natural IgG isolated from human serum or T cell-deficient mice interacted with the fibrinogen domain of microbe-associated ficolins (Panda et al, 2013). The resulting immunocomplex was phagocytosed by macrophages via the IgG receptor FcγRI in a complement-independent manner (Panda et al, 2013). The additional involvement of MBL was demonstrated by experiments showing that natural IgG retained some bacteria-binding activity in the absence of ficolins (Panda et al, 2013).Surface plasmon resonance provided some clues regarding the molecular requirements of the ficolin–IgG interaction (Panda et al, 2013), but the conformational changes required by ficolin to interact with natural IgG remain to be addressed. In particular, it is unclear what segment of the effector Fc domain of natural IgG binds to ficolins and whether Fc-associated glycans are involved in this binding. Specific glycans have been recently shown to mitigate the inflammatory properties of IgG emerging from TI responses (Hess et al, 2013) and this process could implicate ficolins and MBL. Moreover, it would be important to elucidate whether and how the antigen-binding Fab portion of natural IgG regulates its interaction with ficolins and MBL.The in vivo protective role of natural IgG was elegantly demonstrated by showing that reconstitution of IgG-deficient mice lacking the CSR-enzyme activation-induced cytidine deaminase with natural IgG from T cell-insufficient animals enhanced resistance to pathogenic Pseudomonas aeruginosa (Panda et al, 2013). This protective effect was associated with reduced production of proinflammatory cytokines, occurred independently of the complement protein C3 and was impaired by peptides capable to inhibit the binding of natural IgG to ficolin (Panda et al, 2013). Additional in vivo studies will be needed to determine whether natural IgG exerts protective activity in mice lacking ficolin, MBL or FcγRI, and to ascertain whether these molecules also enhance the protective properties of canonical or natural IgG and IgA released by bone marrow plasma cells and mucosal plasma cells, respectively.In conclusion, the findings by Panda et al show that natural IgG adopts ‘crossover'' defensive strategies that blur the conventional boundaries between the innate and adaptive immune systems. The sophisticated integration of somatically recombined and germline-encoded antigen recognition systems described in this new study shall stimulate immunologists to further explore the often underestimated protective virtues of our vast natural antibody repertoire. This effort may lead to the development of novel therapies against infections.  相似文献   

4.
EMBO J 32 15, 2099–2112 doi:10.1038/emboj.2013.125; published online May312013Mutations in Parkin represent ∼50% of disease-causing defects in autosomal recessive-juvenile onset Parkinson''s disease (AR-JP). Recently, there have been four structural reports of autoinhibited forms of this RING-IBR-RING (RBR) ubiquitin ligase (E3) by the Gehring, Komander, Johnston and Shaw groups. The important advances from these studies set the stage for the next steps in understanding the molecular basis for Parkinson''s disease (PD).Regulated protein degradation requires that E3s and their access to substrates be exquisitely controlled. RBR family E3s provide striking examples of this regulation. The complex and compact structures of Parkin (Riley et al, 2013; Spratt et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013) as well as another RBR E3, human homologue of Ariadne (HHARI) (Duda et al, 2013), demonstrate extraordinarily intricate inter-domain arrangements. These autoinhibited structures ensure that their functions are restricted until activated.Until recently, RBR E3s were believed to be a subclass of RING E3s, which allosterically activate E2 conjugated with ubiquitin (E2∼Ub). However, Wenzel et al (2011) determined that they are actually hybrid E3s, containing an E2 binding site in RING1 and a catalytic cysteine residue in the domain designated as RING2. The catalytic cysteine is an acceptor for an ubiquitin from RING1-bound E2∼Ub forming an intermediate (E3∼Ub) that leads to substrate or autoubiquitination. In this way, RBRs resemble HECT E3s, which also form catalytic intermediates in ubiquitination. There are 13 human RBR family E3s. Besides Parkin, two notable RBRs are HOIL-1 and HOIP, which form part of a complex integral to NF-κB activation (Wenzel and Klevit, 2012).In addition to causal roles in AR-JP, single allele mutations of Parkin are found in some sporadic cases of PD (references in Wauer and Komander, 2013). Mutations in the Parkin-associated kinase PINK1, which is upstream of Parkin, also account for a significant number of AR-JP cases (Hardy et al, 2009; Narendra et al, 2012; Lazarou et al, 2013). A number of diverse Parkin substrates have been postulated to be associated with PD. There is substantial evidence that one role for Parkin is at mitochondria. Once activated and recruited to damaged/depolarized mitochondria by PINK1, it ubiquitinates exposed mitochondrial proteins leading to both proteasomal degradation and mitophagy (Narendra et al, 2012; Sarraf et al, 2013). Parkin has also been implicated in cell surface signalling and as a tumour suppressor (see references in Wauer and Komander, 2013).Parkin encodes five structured domains, beginning with an N-terminal ubiquitin-like domain (UbLD) and followed by four domains that each bind two zinc (Zn) atoms (Figure 1A). The most N-terminal of the Zn-binding domains is RING0. C-terminal to this is the RBR, consisting of RING1, the IBR and RING2. The crystal structures of inactive Parkin from Riley et al (2013), Trempe et al (2013) and Wauer and Komander (2013) show remarkable congruity. Spatially, the IBR is at the complete opposite end of the molecule from RING2, to which it is connected by a partially unstructured ∼37 residue linker. This linker includes a two-turn helix, referred to as the repressor element of Parkin (REP) or tether, which binds and occludes the E2 binding face of RING1. RING1 occupies the central position in these structures, and RING0 separates RING1 from RING2 (Figure 1B and C). The latter contains the residue identified by Wenzel et al (2011), and confirmed by all three groups, to be the catalytic cysteine, C431. A lower resolution structure also includes the UbLD and places this domain adjacent to RING1 (Trempe et al, 2013). A second unstructured linker connects the UbLD and RING0. UbLDs are involved in a number of protein–protein interactions and small angle X-ray scattering confirms that this domain is integral to the core structure of Parkin (Spratt et al, 2013; Trempe et al, 2013). Biophysical characterization of Parkin and HHARI suggests that each is a monomer in solution.Open in a separate windowFigure 1Schematic and spatial representation of Parkin. (A) Primary structure and domain designations of Parkin, including the REP sequence within the otherwise unstructured IBR-RING2 linker. (B) Structural representation of full-length Parkin (PDB 4K95) highlighting the complex domain interactions in the three-dimensional structure, the catalytic C431 residue, and residue W403 within the REP, which plays a role in stabilizing the autoinhibited form of Parkin. (C) A model of Parkin with the E2 UbcH5B/Ube2D2 bound (devised using PDB 4K95 and PDB 4AP4 to mimic the position of an E2 bound to RING1) to illustrate the required displacement of UbLD and REP and the large distance between the E2∼Ub attachment site of the E2 and the catalytic active site of Parkin. Note that in this conformation the catalytic Cys within RING2 (C431) remains buried by RING0.RING1 is the only bona fide RING domain. All NMR and crystal structures of IBR domains from Parkin, HHARI and HOIP (PDB ID: 2CT7) are in good agreement. The Parkin and HHARI RING2s are structurally highly homologous and share a common Zn-coordinating arrangement with IBR domains. In contrast to the IBR and RING2, RING0 has a distinct arrangement of Zn-coordinating residues (Beasley et al, 2007; Duda et al, 2013; Riley et al, 2013; Spratt et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013) (see Figure 1F of Trempe et al (2013) for the various Zn coordination arrangements).All of the Parkin crystal structures represent inactive forms of the E3. This is imposed by the quaternary positioning of the domains, which precludes activity in multiple ways. RING0 plays two obvious roles to maintain Parkin in an inactive state. RING0 shares an interface with RING2 and buries C431, making it unavailable as an ubiquitin acceptor. Moreover, RING0 intervenes between RING1 and RING2, creating an insurmountable separation of >50 Å between the active site Cys of an E2 bound to RING1 and C431 (Figure 1B and C). Thus, RING0 must be displaced for ubiquitin transfer to occur. Accordingly, deletion of RING0 results in a marked increase in Parkin autoubiquitination and in C431 reactivity (Riley et al, 2013; Trempe et al, 2013; Wauer and Komander, 2013). In HHARI, these two inhibitory functions are fulfilled by the C-terminal Ariadne domain, which similarly interposes between RING1 and RING2 (Duda et al, 2013).Additional inhibition is provided by the REP, which binds to RING1 at the canonical RING-E2 binding site and prevents E2 binding. This provides at least a partial explanation for the impaired ability of Parkin to bind E2 when compared to HHARI, which lacks this element (Duda et al, 2013). A disease-associated REP mutant (A398T) at the RING1 interface increases autoubiquitination (Wauer and Komander, 2013). The significance of inhibition by REP-RING1 binding was verified by mutating a critical RING1-interacting REP residue (W403A). This increased autoubiquitination and E2 binding (Trempe et al, 2013). Consistent with the requirement for charging C431 with ubiquitin in mitochondrial translocation (Lazarou et al, 2013), Parkin association with depolarized mitochondria is accelerated with this mutation (Trempe et al, 2013). Interestingly, W403 also interacts with the C-terminal Val of Parkin within RING2, and could therefore potentially further stabilize the autoinhibited form of the protein (Riley et al, 2013), consistent with previous observations (Henn et al, 2005).The quaternary structure of full-length Parkin also suggests that displacement of its N-terminal UbLD must occur for full activation (Trempe et al, 2013). The positioning of the UbLD adjacent to RING1 indicates that it would provide a steric impediment to E2∼Ub binding (Figure 1B and C). Additionally, displacement of the UbLD could be important to relieve interactions with the IBR-RING2 linker, which, as suggested in a previous study (Chaugule et al, 2011), might help to maintain Parkin in an inactive state. Finally, the crystal structure of the full-length Parkin indicates that the UbLD is not available for interactions with other proteins. This would limit Parkin''s range of intermolecular interactions.RBR E3s have at least two domains critical for sequential ubiquitin transfer and full activity, RING1 and RING2. The RING1 of Parkin, as well as all other RBR E3s, is notable in lacking the basic residue in the second Zn coordinating loop (or its equivalent in U-box proteins), which has recently been implicated in RING-mediated transfer of Ub from E2∼Ub (Metzger et al, 2013). This suggests that other factors play compensatory roles in positioning ubiquitin for transfer from E2∼Ub to C431. A non-mutually exclusive possibility is that the lack of this basic residue in RING1 limits unwanted attack on the E2∼Ub linkage, thereby minimizing the unregulated ubiquitination. Turning to RING2, the area surrounding the active site C431 of Parkin is notable in that it includes a sequence recognizable as a catalytic triad, similar to that in deubiquitinating enzymes. The Cys-His-Glu grouping, found in Parkin and other RBR E3s, contributes to in vitro activity (Riley et al, 2013; Wauer and Komander, 2013). Interestingly, however, the Glu was dispensable in a cellular assay (Riley et al, 2013). This triad is conserved in HHARI, where an Asn between the Cys and His residues (found in a number of RBRs but not conserved in Parkin), was found to be important for catalysis (Duda et al, 2013).The advances made in these studies impart significant information about an important and clinically relevant E3. However, Parkin, as well as HHARI, has been captured in their inactive, unmodified forms. One obvious question is how does Parkin transition between inactive and active states. PINK1 is implicated in phosphorylating Parkin on its UbLD and potentially other sites, with evidence that phosphorylation contributes to Parkin activation (Narendra et al, 2012). How phosphorylation could contribute to protein interactions that might facilitate Parkin activation, potentially including Parkin oligomerization (Lazarou et al, 2013), is unknown. Regardless, it is evident that considerable unwinding of its quaternary structure must take place.While there is much work ahead to understand these processes, one important interface that must be disrupted for activation is that between the REP and RING1. It is intriguing to consider that such interruption might be associated with other alterations in the IBR-RING2 linker, potentially facilitating the movement of the UbLD from RING1 and contributing to activation. Related to activation is the all-important question of how Parkin recognizes and targets specific substrates. While the UbLD represents a potential site of interaction, most purported substrates are not known to have UbLD-interaction domains. Although interactions involving the UbLD could occur indirectly, through bridging molecules, there is also evidence that other regions of Parkin, including the RBR region, might recognize substrates either directly or indirectly (Tsai et al, 2003) and that some substrates may be phosphorylated by PINK1 (Narendra et al, 2012). Conformational changes induced by substrate interactions, particularly in the IBR RING2 linker, could, as above, represent an important aspect of activation.There are over 75 missense mutations of Parkin associated with AR-JP, most of these inactivate the protein, but there are also some that are activating (Wauer and Komander, 2013). Activating mutations presumably result in pathology at least partially as a consequence of increased autoubiquitination and degradation (e.g., A398T). The current studies help to provide a classification of missense mutations into those that affect (i) folding or stability, (ii) catalytic mechanism, and (iii) interactions between domains. Interdomain mutations might inactivate or contribute to constitutive activation leading to autoubiquitination and degradation.Finally, we know little about how the autosomal recessive and the much more prevalent sporadic forms of PD overlap in their molecular pathology. However, mitochondrial dysfunction is increasingly a common theme. Thus, with the structure of the inactive protein in hand, there is hope that we can begin to consider ways in which domain interactions might be altered in a controlled manner to activate, but not hyperactivate, this critical E3 and lessen the progression of PD.  相似文献   

5.
6.
7.
Günes C  Rudolph KL 《The EMBO journal》2012,31(13):2833-2834
EMBO J 31 13, 2839–2851 (2012); published online May082012Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncogene-induced accumulation of telomeric DNA damage contributes to the induction of senescence in telomerase-negative tumours.Telomere shortening limits the proliferative capacity of primary human cells after 50–70 cell divisions by induction of replicative senescence activated by critically short, dysfunctional telomeres. Different mechanisms were thought to initiate senescence in response to oncogene activation, which occurs abruptly within a few cell doublings (Serrano et al, 1997). Oncogene-induced senescence (OIS) involves an activation of DNA damage signals at stalled replication forks induced by DNA replication stress (Bartkova et al, 2006; Di Micco et al, 2006). Replication fork stalling in response to oncogene activation preferentially affects common fragile sites of the DNA (Tsantoulis et al, 2008). The ends of eukaryotic chromosomes—the telomeres–represent common fragile sites that are sensitive to replication fork stalling (Sfeir et al, 2009). These data made it tempting to speculate whether replication fork stalling at telomeres was causatively involved in OIS. Studies on replicative senescence in human fibroblast also supported this possibility showing that mitogenic signals amplify DNA damage responses in senescent cells (Satyanarayana et al, 2004).Multiple studies revealed experimental evidences that senescence suppresses tumour progression in mouse models and early human tumours (for review see Collado and Serrano, 2010). The relative contribution of OIS and telomere dysfunction induced senescence (TDIS) to tumour suppression and possible interconnections between the two pathways at the level of checkpoint induction were not investigated in previous studies. In this issue of The EMBO Journal, Suram et al (2012) describe the presence of TDIS in human precursor lesions but not in the corresponding malignant tumours. Mechanistically, the study shows that oncogenic signals cause replication fork stalling, resulting in telomeric DNA damage accumulation and activation of DNA damage checkpoints reminiscent to TDIS. Telomerase expression does not rescue replication fork stalling but prevents the accumulation of DNA damage at telomeres allowing a bypass of OIS.The study has several important implications for molecular pathways and therapeutic approaches in cancer that need to be further explored (Figure 1):Open in a separate windowFigure 1Traditional and new models of senescence in tumour suppression. (A) Traditional model of replicative senescence: Telomerase-negative tumour cell clones experience telomere shortening as a consequence of cell division. After a lack period depending on the initial telomere length, tumour cells accumulate telomere dysfunction and activation of senescence impairs tumour growth. Telomerase activation represents a late event allowing tumour progression. (B) New model of oncogene induced, telomere-dependent senescence: Oncogene activation leads to abrupt accumulation of DNA damage at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could be resistant to OIS and may be selected as the cell type of origin of tumour development.(i) Telomere length independent roles of telomeres in tumour suppressionThe classical model of telomere-dependent tumour suppression indicates that proliferation-dependent telomere shortening leads to telomere dysfunction, activation of DNA damage checkpoints, and induction of senescence suppressing the growth of telomerase-negative tumour clones. Studies on mouse models supported this concept showing that telomere shortening impairs the progression of initiated tumours in a telomere length-dependent manner (Feldser and Greider, 2007). The new data from Suram et al (2012) indicate that oncogene-induced replication fork stalling activates a telomere-dependent senescence checkpoint, which is independent of telomere length. The study shows that replication forks stall in response to oncogene activation throughout the genome. However, stalled replication forks are resolved in non-telomeric regions, whereas fork stalling inside telomeres leads to un-repairable DNA damage in telomerase-negative cells. These findings are in line with recent publication showing accumulation of un-repairable DNA damage in telomeric DNA in response to aging and stress-induced DNA damage (Fumagalli et al, 2012).(ii) Telomere length independent roles of telomerase in tumour progressionFollowing the classical model telomeres in tumour suppression (Figure 1A), telomerase re-activation is required for tumour progression by limiting telomere dysfunction and the induction of DNA damage checkpoints in response to telomere shortening. The new data from Suram et al (2012) indicate that telomerase has an additional telomere length independent role in tumour progression. The study shows that catalytically active telomerase prevents the activation of DNA damage signals originating from stalled replication forks inside telomeres in response to oncogene activation (Figure 1B). The exact mechanisms of telomerase-dependent healing of stalled replication forks at telomeres remain to be elucidated. It is also unclear whether telomerase activity can prevent any type of DNA damage at telomeres as an over-expression of TERT could not suppress irradiation-induced cellular senescence or the persistence of telomeric DDR following irradiation, H2O2, or chemotherapy induced DNA damage (Hewitt et al, 2012).The data could provide a plausible explanation for the increased tumorigenesis in telomerase transgenic mice—a finding which is difficult to explain by telomere length dependent effects of telomerase given the long telomere reserves in mouse tissues (Gonzalez-Suarez et al, 2001). According to the findings of Suram et al (2012), anti-telomerase therapies could have immediate anti-cancer effects in tumours depending on telomerase-mediated healing of stalled replication forks at telomeres. Specific markers for this dependency could be of clinical value. In addition, the data support the concept that somatic stem cells could represent the cell type of origin of cancers. In contrast to differentiated somatic cells, tissues stem cells are often telomerase-positive, indicating that stem cells might be less sensitive to OIS.  相似文献   

8.
V Horsley 《The EMBO journal》2012,31(18):3653-3654
Science advance online publication July192012; doi:10.1126/science.1218835The maintenance and regeneration of continually shedding epithelial tissues that make up the linings and barriers of our bodies requires rapid and continual input of proliferative progenitor cells for tissue homeostasis. The mechanisms by which epithelial progenitors cells maintain tissues remain controversial. In a recent Science paper, Doupé et al (2012) demonstrate that a population of equivalent progenitor cells support tissue homeostasis of the oesophagus without the need for slow cycling cells as described in other rapidly dividing epithelia.In tissues such as blood and skin in which differentiated cells constantly turnover, proliferative progenitor populations are required to continually produce lost differentiated cells. Several models have been proposed to explain mechanisms by which progenitor cells contribute to tissue maintenance (Figure 1). A hierarchical model has been suggested in which longer lived stem cells, which may also cycle slowly, produce highly proliferative cells with less self-renewal potential that differentiate into a restricted number of cells. Following proliferative cells in pulse-chase experiments and genetic lineage tracing has supported a hierarchical model in the blood, epidermis and intestine (Fuchs, 2009). Alternatively, an equivalency model has been proposed in which all proliferative progenitor cells are equally able to produce proliferative and differentiated progeny in a stochastic manner. Analysis of labelled clones has supported an equivalency model for progenitors in the interfollicular epidermis and intestine (Clayton et al, 2007; Doupé et al, 2010; Snippert et al, 2010).Open in a separate windowFigure 1Two types of models have been put forward to describe the pattern of progenitor behaviour within mammalian tissues. In the hierarchical model, a stem cell can produce proliferative progenitors with less self-renewal potential that differentiate into lineage-specific cells. Alternatively, an equivalency model has been proposed that assumes equal behaviour of progenitor cells to maintain tissue homeostasis.An elevated interest in understanding the dynamics of oesophageal epithelium has resulted, in part, from the rapid increase in the incidence of oesophageal adenocarcinoma (Devesa et al, 1998). The oesophagus is a stratified epithelium that lacks any appendages or glands, and thus consists of a basal layer of proliferative keratinocytes and several suprabasal layers of differentiated cells, which are continually shed. Previously, labelling of proliferative cells with DNA analogues has demonstrated that proliferation is restricted to the basal cells, which all proliferate in 5 days seemingly stochastically, supporting an equivalency model (Marques-Periera and Leblond, 1965). In contrast, studies using chimeric mice have suggested that proliferation of labelled progenitor cells occurs in a hierarchical manner (Thomas et al, 1988; Croagh et al, 2008).To address this controversy, a recent study in Science uses several genetic mouse models to define the contribution of proliferative basal cells to oesophageal homeostasis (Doupé et al, 2012). In one mouse model, the authors utilized a genetic pulse-chase system based on the tetracycline-regulated expression of the histone H2B-GFP (Tumbar et al, 2004). They find that the rapidly dividing epithelial cells of the oesophagus lose H2B-GFP expression after 4 weeks. These data suggest that either H2B-GFP is degraded (Waghmare et al, 2008) or oesophageal progenitor cells proliferate faster than their counterparts in skin epithelial appendages or blood lineages, which retain H2B-GFP after 4 weeks (Tumbar et al, 2004; Foudi et al, 2009).To analyse the properties of oesophageal progenitor cells in more detail, the authors label single cells using an inducible cre-lox genetic system and followed clones for a year. Similar to their results with this system in the tail and ear epidermis (Clayton et al, 2007; Doupé et al, 2010), the authors find that the size of the persistent clones is linear with time. Statistical analysis of the clone size data supports the ability of the cells to contribute to proliferative and non-proliferative (i.e., differentiated) progeny with equal probability. Thus, these data support a model in which all of the labelled cells are equivalent.In addition to homeostasis, the authors explore how proliferative progenitors contribute to alterations in tissue homeostasis. After inflicting wounds by biopsy, marked clones span both proliferative and non-proliferative zones of the healing oesophageal epithelium, suggesting that they maintain a progenitor fate with distinct phenotypes. With atRA treatment, the authors show that suprabasal cell formation increases, which is consistent with the known effect of atRA on the oesophagus (Lasnitzki, 1963). Statistical analysis reveals that the probability of forming basal and suprabasal cells was not altered with atRA administration. However, since proliferative cells exist in suprabasal layers during epithelial hyperplasia, additional analyses of cell state are required to determine if atRA maintains stochastic fate decisions of progenitor cells. Furthermore, the progenitor response to atRA treatment might be limited by niche space along the basement membrane like in intestinal crypt progenitor cells (Snippert et al, 2010).In summary, this study together with the authors'' previous work provides additional support for the existence of equivalent progenitor cells within stratified epithelium in several tissues. Additional studies revealing how epithelial progenitor cells behave when proliferation and differentiation are altered in the oesophagus could shed light on mechanisms for the pathogenesis of oesophageal tumours or diseases such as Barrett''s oesophagus.  相似文献   

9.
10.
11.
12.
EMBO J 31 3, 552–562 (2012); published online December132011The Basal Body (BB) acts as the template for the axoneme, the microtubule-based structure of cilia and flagella. Although several proteins were recently implicated in both centriole and BB assembly and function, their molecular mechanisms are still poorly characterized. In this issue of The EMBO journal, Li and coworkers describe for the first time the near-native structure of the BB at 33 Å resolution obtained by Cryo-Electron Microscopy analysis of wild-type (WT) isolated Chlamydomonas BBs. They identified several uncharacterized non-tubulin structures and variations along the length of the BB, which likely reflect the binding and function of numerous macromolecular complexes. These complexes are expected to define BB intrinsic properties, such as its characteristic structure and stability. Similarly to the high-resolution structures of ribosome and nuclear pore complexes, this study will undoubtedly contribute towards the future analysis of centriole and BB biogenesis, maintenance and function.The microtubule (MT)-based structure of the cilium/flagellum grows from the distal part of the Basal Body (BB), which in many animal cells develops from the mature centriole in the centrosome. Electron microscopic (EM) images of chemically fixed resin-embedded centrioles and basal bodies (CBBs) suggest that their ultrastructure is similar, and that their key components are MTs. The mechanisms underlying the organization of CBB MTs, comprising highly stable closed and open MTs, are likely to hold many surprises as they are remarkably different from other microtubular structures in the cell. Additionally, non-MT-based structures are also part of the CBB, including a cartwheel in the proximal lumen region that reinforces CBB symmetry (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011).Several centriole components and BB proteins were identified by comparative and/or functional genomics and proteomics studies of purified CBBs (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011). Advances in our understanding of the molecular mechanisms of CBB assembly depend on high-resolution comparative studies of wild-type (WT) and mutant structures, as well as characterization of the localization of molecular complexes within the small CBB structure. Despite the existence of beautiful ultrastructure data acquired from chemically fixed specimens (Geimer and Melkonian, 2004; Ibrahim et al, 2009), high-resolution structures of native CBBs were missing. Using electron cryo-tomography and 3D subtomogram averaging, Li et al (2012) solved the structure of the near-native BB triplet at 33 Å resolution. A pseudo-atomic model of the tubulin protofilaments at the core of the triplets was built by fitting the atomic structure of α/β-tubulin monomers into the BB tomograms.The 3D density map reveals several additional densities that represent non-tubulin proteins attached, both internally and externally, to all triplet MTs, some linking MTs inside the triplets and/or MTs in consecutive triplets (Li et al, 2012; for a summary, see Li et al, 2012; Geimer and Melkonian, 2004; Ibrahim et al, 2009), but with less detail and complexity. The authors speculate that some of the additional densities present at the A- and B-tubule inner wall might correspond to proteins of the tektin family, probably conferring rigidity to the BB triplet (Amos, 2008).

Table 1

Characteristics of the non-α/β-tubulin structures reported in Li et al (2012) in this issue of The EMBO journal
Open in a separate windowThe authors also show that the BB proximal and distal structures are significantly different. The majority of the changes are confined to (1) the C-tubule, (2) linkers between the adjacent triplets and (3) the twist angle of the triplets along the BB length (Li et al, 2012; Figure 1). It is possible that together with the cartwheel, the linkers between consecutive triplets contribute to establishing and reinforcing the CBB nine-fold symmetry, by defining the angles between triplets and in consequence the available space to fit these MTs. The authors also propose that the structural variations along the length of the BB suggest a sequential and coordinated BB assembly process. It will be important to obtain high-resolution structures of the growing WT CBB and of mutants in genes associated with CBB stability and elongation, such as δ-tubulin, POC5, CPAP, POC1 and Bld10 (reviewed in Azimzadeh and Marshall, 2010 and Carvalho-Santos et al, 2011) to complement previous work (Pelletier et al, 2006; Guichard et al, 2010) and to unveil CBB assembly mechanisms.Open in a separate windowFigure 1Proximal and distal views of the reconstructed basal body model. MT triplets are represented in blue and non-tubulin proteins attached to the triplets are represented in yellow. Note the structural differences between the proximal and distal regions of the BB at the level of the C-tubule and non-tubulin structures. Lower images represent 3 × magnified view of the box marked area; white arrowheads—indicate the changes in the C-Tubule configuration; black arrowheads—indicate changes in the non-MT structures. Distal view is mirrored to facilitate the comparison with proximal view. Images were kindly provided by Sam Li.A comparison of the BB structure with that of the axoneme (resolved at 30 Å; Sui and Downing, 2006) revealed that the distribution of the accessory structures on the outer and inner surface of the A- and B-tubules of the BB triplet are different from the axonemal doublet MTs for which they serve as template (Li et al, 2012). It will be important in the future to understand what those differences mean for CBB and axoneme function, including links with pericentriolar components and motility.The high-resolution structure of ribosome and nuclear pore complexes, solved by single particle reconstruction electron cryo-tomography, contributed immensely to our knowledge on these organelles assembly and function (reviewed in Ramakrishnan, 2009 and Ben-Harush et al, 2010). The BB high-resolution structural analysis reported in this article (Li et al, 2012) will certainly pave the road for the identification of essential non-MT BB components, and allow us to understand their molecular role in the context of CBB biogenesis, maintenance and function.  相似文献   

13.
14.
EMBO J (2013) 32 23, 3017–3028 10.1038/emboj.2013.224; published online October182013Commensal gut bacteria benefit their host in many ways, for instance by aiding digestion and producing vitamins. In a new study in The EMBO Journal, Jones et al (2013) report that commensal bacteria can also promote intestinal epithelial renewal in both flies and mice. Interestingly, among commensals this effect is most specific to Lactobacilli, the friendly bacteria we use to produce cheese and yogurt. Lactobacilli stimulate NADPH oxidase (dNox/Nox1)-dependent ROS production by intestinal enterocytes and thereby activate intestinal stem cells.The human gut contains huge numbers of bacteria (∼1014/person) that play beneficial roles for our health, including digestion, building our immune system and competing with harmful microbes (Sommer and Backhed, 2013). Both commensal and pathogenic bacteria can elicit antimicrobial responses in the intestinal epithelium and also stimulate epithelial turnover (Buchon et al, 2013; Sommer and Backhed, 2013). In contrast to gut pathogens, relatively little is known about how commensal bacteria influence intestinal turnover. In a simple yet elegant study reported recently in The EMBO Journal, Jones et al (2013) show that among several different commensal bacteria tested, only Lactobacilli promoted much intestinal stem cell (ISC) proliferation, and it did so by stimulating reactive oxygen species (ROS) production. Interestingly, the specific effect of Lactobacilli was similar in both Drosophila and mice. In addition to distinguishing functional differences between species of commensals, this work suggests how the ingestion of Lactobacillus-containing probiotic supplements or food (e.g., yogurt) might support epithelial turnover and health.In both mammals and insects, ISCs give rise to intestinal enterocytes, which not only absorb nutrients from the diet but must also interact with the gut microbiota (Jiang and Edgar, 2012). The metazoan intestinal epithelium has developed conserved responses to enteric bacteria, for instance the expression of antimicrobial peptides (AMPs; Gallo and Hooper, 2012; Buchon et al, 2013), presumably to kill harmful bacteria while allowing symbiotic commensals to flourish. In addition to AMPs, intestinal epithelial cells use NADPH family oxidases to generate ROS that are used as microbicides (Lambeth and Neish, 2013). High ROS levels during enteric infections likely act non-discriminately against both commensals and pathogens, but controlled, low-level ROS can act as signalling molecules that regulate various cellular processes including proliferation (Lambeth and Neish, 2013). In flies, exposure to pathogenic Gram-negative bacteria has been reported to result in ROS (H2O2) production by an enzyme called dual oxidase (Duox; Ha et al, 2005). Duox activity in the fly intestine (and likely also the mammalian one) has recently been discovered to be stimulated by uracil secretion by pathogenic bacteria (Lee et al, 2013). In the mammalian intestine another enzyme, NADPH oxidase (Nox), has also been shown to produce ROS in the form of superoxide (O2), in this case in response to formylated bacterial peptides (Lambeth and Neish, 2013). A conserved role for Nox in the Drosophila intestinal epithelium had not until now been explored.Jones et al (2013) checked seven different commensal bacterial to see which would stimulate ROS production by the fly''s intestinal epithelium, and found that only one species, a Gram-positive Lactobacillus, could stimulate significant production of ROS in intestinal enterocytes. Five bacterial species were checked in mice or cultured intestinal cells, and again it was a Lactobacillus that generated the strongest ROS response. Although not all of the most prevalent enteric bacteria were assayed, those others that were—such as E. coli—induced only mild, barely detectable levels of ROS in enterocytes. Surprisingly, although bacteria pathogenic to Drosophila, like Erwinia caratovora, were expected to stimulate ROS production via Duox, Jones et al (2013) did not observe this using the ROS detecting dye hydrocyanine-Cy3, or a ROS-sensitive transgene reporter, Glutatione S-transferase-GFP, in flies. Further, Jones et al (2013) found that genetically suppressing Nox in either Drosophila or mice decreased ROS production after Lactobacillus ingestion. Consistent with the important role of Nox, Duox appeared not to be required for ROS production after Lactobacillus ingestion. In addition, Jones et al (2013) found that Lactobacilli also promoted DNA replication—a metric of cell proliferation and epithelial renewal—in the fly''s intestine, and that this was also ROS- and Nox-dependent. Again, the same relationship was found in the mouse small intestine. Together, these results suggest a conserved mechanism by which Lactobacilli can stimulate Nox-dependent ROS production in intestinal enterocytes and thereby promote ISC proliferation and enhance gut epithelial renewal.In the fly midgut, uracil produced by pathogenic bacteria can stimulate Duox-dependent ROS production, which is thought to act as a microbicide (Lee et al, 2013), and can also promote ISC proliferation (Buchon et al, 2009). However, Duox-produced ROS may also damage the intestinal epithelium itself and thereby promote epithelial regeneration indirectly through stress responses. In this disease scenario, ROS appears to be sensed by the stress-activated Jun N-terminal Kinase (JNK; Figure 1A), which can induce pro-proliferative cytokines of the Leptin/IL-6 family (Unpaireds, Upd1–3) (Buchon et al, 2009; Jiang et al, 2009). These cytokines activate JAK/STAT signalling in the ISCs, promoting their growth and proliferation, and accelerating regenerative repair of the gut epithelium (Buchon et al, 2009; Jiang et al, 2009). It is also possible, however, that low-level ROS, or specific types of ROS (e.g., H2O2) might induce ISC proliferation directly by acting as a signal between enterocytes and ISCs. Since commensal Lactobacillus stimulates ROS production via Nox rather than Duox, this might be a case in which a non-damaging ROS signal promotes intestinal epithelial renewal without stress signalling or a microbicidal effect (Figure 1B). However, Jones et al (2013) stopped short of ruling out a role for oxidative damage, cell death or stress signalling in the intestinal epithelium following colonization by Lactobacilli, and so these parameters must be checked in future studies. Perhaps even the friendliest symbiotes cause a bit of ‘healthy'' damage to the gut lining, stimulating it to refresh and renew. Whether damage-dependent or not, the stimulation of Drosophila ISC proliferation by commensals and pathogens alike appears to involve the same cytokine (Upd3; Buchon et al, 2009), and so some of the differences between truly pathogenic and ‘friendly'' gut microbes might be ascribed more to matters of degree than qualitative distinctions. Future studies exploring exactly how different types of ROS signals stimulate JNK activity, gut cytokine expression and epithelial renewal should be able to sort this out, and perhaps help us learn how to better manage the ecosystems in our own bellies. From the lovely examples reported by Jones et al (2013), an experimental back-and-forth between the Drosophila and mouse intestine seems an informative way to go.Open in a separate windowFigure 1Metazoan intestinal epithelial responses to commensal and pathogenic bacteria. (A) High reactive oxygen species (ROS) levels generated by dual oxidase (Duox) in response to uracil secretion by pathogenic bacteria. (B) Low ROS levels generated by NADPH oxidase (Nox) in response to commensal bacteria. In addition to acting as a microbiocide, ROS in flies may stimulate JNK signaling and cytokine (Upd 1–3) expression in enterocytes, thereby stimulating ISC proliferation and epithelial turnover or regeneration. Whether this stimulation required damage to or loss of enterocytes has yet to be explored.  相似文献   

15.
16.
17.
18.
EMBO J 31 5, 1062–1079 (2012); published online January172012In this issue of The EMBO Journal, Garg et al (2012) delineate a signalling pathway that leads to calreticulin (CRT) exposure and ATP release by cancer cells that succumb to photodynamic therapy (PTD), thereby providing fresh insights into the molecular regulation of immunogenic cell death (ICD).The textbook notion that apoptosis would always take place unrecognized by the immune system has recently been invalidated (Zitvogel et al, 2010; Galluzzi et al, 2012). Thus, in specific circumstances (in particular in response to anthracyclines, oxaliplatin, and γ irradiation), cancer cells can enter a lethal stress pathway linked to the emission of a spatiotemporally defined combination of signals that is decoded by the immune system to activate tumour-specific immune responses (Zitvogel et al, 2010). These signals include the pre-apoptotic exposure of intracellular proteins such as the endoplasmic reticulum (ER) chaperon CRT and the heat-shock protein HSP90 at the cell surface, the pre-apoptotic secretion of ATP, and the post-apoptotic release of the nuclear protein HMGB1 (Zitvogel et al, 2010). Together, these processes (and perhaps others) constitute the molecular determinants of ICD.In this issue of The EMBO Journal, Garg et al (2012) add hypericin-based PTD (Hyp-PTD) to the list of bona fide ICD inducers and convincingly link Hyp-PTD-elicited ICD to the functional activation of the immune system. Moreover, Garg et al (2012) demonstrate that Hyp-PDT stimulates ICD via signalling pathways that overlap with—but are not identical to—those elicited by anthracyclines, which constitute the first ICD inducers to be characterized (Casares et al, 2005; Zappasodi et al, 2010; Fucikova et al, 2011).Intrigued by the fact that the ER stress response is required for anthracycline-induced ICD (Panaretakis et al, 2009), Garg et al (2012) decided to investigate the immunogenicity of Hyp-PDT (which selectively targets the ER). Hyp-PDT potently stimulated CRT exposure and ATP release in human bladder carcinoma T24 cells. As a result, T24 cells exposed to Hyp-PDT (but not untreated cells) were engulfed by Mf4/4 macrophages and human dendritic cells (DCs), the most important antigen-presenting cells in antitumour immunity. Similarly, murine colon carcinoma CT26 cells succumbing to Hyp-PDT (but not cells dying in response to the unspecific ER stressor tunicamycin) were preferentially phagocytosed by murine JAWSII DCs, and efficiently immunized syngenic BALB/c mice against a subsequent challenge with living cells of the same type. Of note, contrarily to T24 cells treated with lipopolysaccharide (LPS) or dying from accidental necrosis, T24 cells exposed to Hyp-PDT activated DCs while eliciting a peculiar functional profile, featuring high levels of NO production and absent secretion of immunosuppressive interleukin-10 (IL-10) (Garg et al, 2012). Moreover upon co-culture with Hyp-PDT-treated T24 cells, human DCs were found to secrete high levels of IL-1β, a cytokine that is required for the adequate polarization of interferon γ (IFNγ)-producing antineoplastic CD8+ T cells (Aymeric et al, 2010). Taken together, these data demonstrate that Hyp-PDT induces bona fide ICD, eliciting an antitumour immune response.By combining pharmacological and genetic approaches, Garg et al (2012) then investigated the molecular cascades that are required for Hyp-PDT-induced CRT exposure and ATP release. They found that CRT exposure triggered by Hyp-PDT requires reactive oxygen species (as demonstrated with the 1O2 quencher L-histidine), class I phosphoinositide-3-kinase (PI3K) activity (as shown with the chemical inhibitor wortmannin and the RNAi-mediated depletion of the catalytic PI3K subunit p110), the actin cytoskeleton (as proven with the actin inhibitor latrunculin B), the ER-to-Golgi anterograde transport (as shown using brefeldin A), the ER stress-associated kinase PERK, the pro-apoptotic molecules BAX and BAK as well as the CRT cell surface receptor CD91 (as demonstrated by their knockout or RNAi-mediated depletion). However, there were differences in the signalling pathways leading to CRT exposure in response to anthracyclines (Panaretakis et al, 2009) and Hyp-PDT (Garg et al, 2012). In contrast to the former, the latter was not accompanied by the exposure of the ER chaperon ERp57, and did not require eIF2α phosphorylation (as shown with non-phosphorylatable eIF2α mutants), caspase-8 activity (as shown with the pan-caspase blocker Z-VAD.fmk, upon overexpression of the viral caspase inhibitor CrmA and following the RNAi-mediated depletion of caspase-8), and increased cytosolic Ca2+ concentrations (as proven with cytosolic Ca2+ chelators and overexpression of the ER Ca2+ pump SERCA). Moreover, Hyp-PDT induced the translocation of CRT at the cell surface irrespective of retrograde transport (as demonstrated with the microtubular poison nocodazole) and lipid rafts (as demonstrated with the cholesterol-depleting agent methyl-β-cyclodextrine). Of note, ATP secretion in response to Hyp-PDT depended on the ER-to-Golgi anterograde transport, PI3K and PERK activity (presumably due to their role in the regulation of secretory pathways), but did not require BAX and BAK (Garg et al, 2012). Since PERK can stimulate autophagy in the context of ER stress (Kroemer et al, 2010), it is tempting to speculate that autophagy is involved in Hyp-PDT-elicited ATP secretion, as this appears to be to the case during anthracycline-induced ICD (Michaud et al, 2011).Altogether, the intriguing report by Garg et al (2012) demonstrates that the stress signalling pathways leading to ICD depend—at least in part—on the initiating stimulus (Figure 1). Speculatively, this points to the coexistence of a ‘core'' ICD signalling pathway (which would be common to several, if not all, ICD inducers) with ‘private'' molecular cascades (which would be activated in a stimulus-dependent fashion). Irrespective of these details, the work by Garg et al (2012) further underscores the importance of anticancer immune responses elicited by established and experimental therapies.Open in a separate windowFigure 1Molecular mechanisms of immunogenic cell death (ICD). At least three processes underlie the immunogenicity of cell death: the pre-apoptotic exposure of calreticulin (CRT) at the cell surface, the secretion of ATP, and the post-apoptotic release of HMGB1. ICD can be triggered by multiple stimuli, including photodynamic therapy, anthracycline-based chemotherapy, and some types of radiotherapy. The signalling pathways elicited by distinct ICD inducers overlap, but are not identical. In red are indicated molecules and processes that—according to current knowledge—may be required for CRT exposure and ATP secretion in response to most, if not all, ICD inducers. The molecular determinants of the immunogenic release of HMGB1 remain poorly understood. ER, endoplasmic reticulum; P-eIF2α, phosphorylated eIF2α; PI3K, class I phosphoinositide-3-kinase; ROS, reactive oxygen species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号