首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Experimental investigations have shown that the pre-Bötzinger complex (pre-BötC) within the mammalian brainstem generates the inspiratory phase of respiratory rhythm. Based on a single-compartment model of a pre-BötC inspiratory neuron, we, in this paper, use semi-analytical, numerical as well as fast-slow dynamical methods to investigate the effects of sodium conductance (\(g_{\text{Na}}\)) and potassium conductance (\(g_{{\text{K}}}\)) on the firing activities of pre-BötC and try to reveal the dynamical mechanisms behind them. We show how \(g_{{\text{Na}}}\) and \(g_{\text{K}}\) affect the bifurcations of the fast-subsystem and how the the firing patterns of pre-BötC transit according to the bifurcations.  相似文献   

2.
The technique of horseradish peroxidase retrograde axonal transport and local electrical stimulation of the pre-Botzinger complex was used to study the connections between neurones of the bulbar respiratory nucleus and descending pathways from bulbar nuclei in the cat spinal cord. A possible role of the nuclei under study for rhythmogenesis of breathing and respiratory control, is discussed.  相似文献   

3.
In the in vivo anesthetized adult cat model, multiple patterns of inspiratory motor discharge have been recorded in response to chemical stimulation and focal hypoxia of the pre-B?tzinger complex (pre-B?tC), suggesting that this region may participate in the generation of complex respiratory dynamics. The complexity of a signal can be quantified using approximate entropy (ApEn) and multiscale entropy (MSEn) methods, both of which measure the regularity (orderliness) in a time series, with the latter method taking into consideration temporal fluctuations in the underlying dynamics. The current investigation was undertaken to examine the effects of pre-B?tC-induced excitation of phasic phrenic nerve discharge, which is characterized by high-amplitude, rapid-rate-of-rise, short-duration bursts, on the complexity of the central inspiratory neural controller in the vagotomized, chloralose-anesthetized adult cat model. To assess inspiratory neural network complexity, we calculated the ApEn and MSEn of phrenic nerve bursts during eupneic (basal) discharge and during pre-B?tC-induced excitation of phasic inspiratory bursts. Chemical stimulation of the pre-B?tC using DL-homocysteic acid (DLH; 10 mM; 10-20 nl; n=10) significantly reduced the ApEn from 0.982+/-0.066 (mean+/-SE) to 0.664+/-0.067 (P<0.001) followed by recovery ( approximately 1-2 min after DLH) of the ApEn to 1.014+/-0.067; a slightly enhanced magnitude reduction in MSEn was observed. Focal pre-B?tC hypoxia (induced by sodium cyanide; NaCN; 1 mM; 20 nl; n=2) also elicited a reduction in both ApEn and MSEn, similar to those observed for the DLH-induced response. These observations demonstrate that activation of the pre-B?tC reduces inspiratory network complexity, suggesting a role for the pre-B?tC in regulation of complex respiratory dynamics.  相似文献   

4.
Activity of neurons in the pre-Bötzinger complex within the mammalian brain stem has an important role in the generation of respiratory rhythms. Previous experimental results have shown that the dynamics of sodium and calcium within each cell may be responsible for various bursting mechanisms. In this paper, we study the bursting dynamics of the two-coupled pre-Bötzinger complex neurons. Using a combination of fast-slow decomposition and two-parameter bifurcation analysis, we explore the possible forms of dynamics that the model network can produce as well the transitions of in-phase and anti-phase bursting respectively.  相似文献   

5.
Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive.  相似文献   

6.
There are many types of neurons that intrinsically generate rhythmic bursting activity, even when isolated, and these neurons underlie several specific motor behaviors. Rhythmic neurons that drive the inspiratory phase of respiration are located in the medullary pre-Bötzinger Complex (pre-BötC). However, it is not known if their rhythmic bursting is the result of intrinsic mechanisms or synaptic interactions. In many cases, for bursting to occur, the excitability of these neurons needs to be elevated. This excitation is provided in vitro (e.g. in slices), by increasing extracellular potassium concentration (K out ) well beyond physiologic levels. Elevated K out shifts the reversal potentials for all potassium currents including the potassium component of leakage to higher values. However, how an increase in K out , and the resultant changes in potassium currents, induce bursting activity, have yet to be established. Moreover, it is not known if the endogenous bursting induced in vitro is representative of neural behavior in vivo. Our modeling study examines the interplay between K out , excitability, and selected currents, as they relate to endogenous rhythmic bursting. Starting with a Hodgkin-Huxley formalization of a pre-BötC neuron, a potassium ion component was incorporated into the leakage current, and model behaviors were investigated at varying concentrations of K out . Our simulations show that endogenous bursting activity, evoked in vitro by elevation of K out , is the result of a specific relationship between the leakage and voltage-dependent, delayed rectifier potassium currents, which may not be observed at physiological levels of extracellular potassium.  相似文献   

7.
We examined the effects of focal tissue acidosis in the pre-B?tzinger complex (pre-B?tC; the proposed locus of respiratory rhythm generation) on phrenic nerve discharge in chloralose-anesthetized, vagotomized, paralyzed, mechanically ventilated cats. Focal tissue acidosis was produced by unilateral microinjection of 10-20 nl of the carbonic anhydrase inhibitors acetazolamide (AZ; 50 microM) or methazolamide (MZ; 50 microM). Microinjection of AZ and MZ into 14 sites in the pre-B?tC reversibly increased the peak amplitude of integrated phrenic nerve discharge and, in some sites, produced augmented bursts (i.e., eupneic breath ending with a high-amplitude, short-duration burst). Microinjection of AZ and MZ into this region also reversibly increased the frequency of eupneic phrenic bursts in seven sites and produced premature bursts (i.e., doublets) in five sites. Phrenic nerve discharge increased within 5-15 min of microinjection of either agent; however, the time to the peak increase and the time to recovery were less with AZ than with MZ, consistent with the different pharmacological properties of AZ and MZ. In contrast to other CO(2)/H(+) brain stem respiratory chemosensitive sites demonstrated in vivo, which have only shown increases in amplitude of integrated phrenic nerve activity, focal tissue acidosis in the pre-B?tC increases frequency of phrenic bursts and produces premature (i.e., doublet) bursts. These data indicate that the pre-B?tC has the potential to play a role in the modulation of respiratory rhythm and pattern elicited by increased CO(2)/H(+) and lend additional support to the concept that the proposed locus for respiratory rhythm generation has intrinsic chemosensitivity.  相似文献   

8.
Developmental anomalies of central respiratory neural control contribute to newborn mortality and morbidity. Elucidation of the cellular, molecular, trophic, and genetic mechanisms involved in the formation and function of respiratory nuclei during prenatal development will provide a foundation for understanding pathologies. The pre-B?tzinger Complex (pre-B?tC) is a specific group of neurons located in the ventrolateral medulla that is critical for respiratory rhythmogenesis. Thus it has become a major focus of research. Here, we provide an overview of current knowledge regarding the anatomical and functional emergence of the rodent pre-B?tC during the prenatal period.  相似文献   

9.
In adult anaesthetized rats the respiratory reactions to microinjections of GABA (10(-5) M) and baclofen (10(-6) M) into Botzinger complex (BC) and pre-Botzinger complex (PBC) were investigated. It was shown, that GABA microinjections into BC shortened inspiratory time and extended expiratory time while respiratory rate was not changed essentially, under this conditions the tidal volume and ventilation were increased. GABA microinjections into PBC significantly inhibited respiratory rhythm due to inspiratory and expiratory time prolongations and reduced tidal volume. The microinjections of baclofen into BC reduced expiration time and ventilation, and increased respiratory frequency whereas microinjections into PBC increased tidal volume without respiratory rate and expiratory time changes. It is suggested that the reactions observed demonstrate the various contribution of GABAergic mechanisms, including GABA(B)-receptors within BC and PBC, in control of respiratory pattern parameters.  相似文献   

10.
Computational models of single pacemaker neuron and neural population in the pre-Bötzinger Complex (pBC) were developed based on the previous models by Butera et al. (1999a,b). Our modeling study focused on the conditions that could define endogenous bursting vs. tonic activity in single pacemaker neurons and population bursting vs. asynchronous firing in populations of pacemaker neurons. We show that both bursting activity in single pacemaker neurons and population bursting activity may be released or suppressed depending on the expression of persistent sodium (INaP) and delayed-rectifier potassium (IK) currents. Specifically, a transition from asynchronous firing to population bursting could be induced by a reduction of IK via a direct suppression of the potassium conductance or through an elevation of extracellular potassium concentration. Similar population bursting activity could be triggered by an augmentation of INaP. These findings are discussed in the context of the possible role of population bursting activity in the pBC in the respiratory rhythm generation in vivo vs. in vitro and during normal breathing in vivo vs. gasping.  相似文献   

11.
J. Neurochem. (2012) 122, 923-933. ABSTRACT: The pre-B?tzinger complex (pre-B?tC) in the ventrolateral medulla oblongata is critical for the generation of respiratory rhythm in mammals. Somatostatin (SST) and neurokinin 1 receptor (NK1R) immunoreactivity have been used as markers of the pre-B?tC. SST immunoreactivity almost completely overlaps with small fusiform NK1R-immunoreactive (ir) neurons, the presumed rhythmogenic neurons, but not with large multipolar NK1R-ir neurons. Understanding the neurochemical characteristics, especially the synaptic relationship of SST/NK1R-ir neurons within the pre-B?tC network is essential in providing cellular and structural bases for understanding their physiological significance. This work has not been documented so far. We found that SST immunoreactivity was highly expressed in terminals, somas, and primary dendrites in the pre-B?tC. Besides the small fusiform neurons, a small population of medium-sized NK1R-ir neurons also colocalized with SST. Large NK1R-ir neurons were not SST-ir, but received somatostatinergic inputs. SST-ir terminals were glutamatergic or GABAergic, and synapsed with NK1R-ir neurons. Most of synapses between them were of the symmetric type, indicating their inhibitory nature. Asymmetric synapses were evident between SST-ir terminals and NK1R-ir dendrites, strongly suggesting an excitatory innervation from the presumed rhythmogenic neurons as these neurons are glutamatergic. We speculate that SST-mediated excitatory and inhibitory synaptic transmission onto NK1R-ir rhythmogenic and follower neurons synchronizes their activity to contribute to respiratory rhythmogenesis and control.  相似文献   

12.
The exchange factor directly activated by cAMP (Epac) can couple cAMP production to the activation of particular membrane and cytoplasmic targets. Using patch-clamp recordings and calcium imaging in organotypic brainstem slices, we examined the role of Epac in pre-B?tzinger complex, an essential part of the respiratory network. The selective agonist 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT) sensitized calcium mobilisation from inositol-1,4,5-trisphosphate-sensitive internal stores that stimulated TRPM4 (transient receptor potential cation channel, subfamily M, Melastatin) channels and potentiated the bursts of action potentials. 8-pCPT actions were abolished after inhibition of phospholipase C with U73122 and depletion of calcium stores with thapsigargin. Caffeine-sensitive release channels were not modulated by 8-pCPT. Epac inhibited ATP-sensitive K(+) channels that also led to the enhancement of bursting by 8-pCPT. Bursting activity, spontaneous calcium transients and activity of TRPM4 and ATP-sensitive K(+) channels were potentiated after brief exposures to bradykinin and incubation with wortmannin produced opposite effects that can be explained by changes in phosphatidylinositol 4,5-bisphosphate levels. 8-pCPT stimulated the respiratory motor output in functionally intact preparations and the effects of bradykinin and wortmannin were identical to those observed in organotypic slices. The data thus indicate a novel pathway of controlling bursting activity in pre-B?tzinger complex neurons through Epac that can involved in reinforcement of the respiratory activity by cAMP.  相似文献   

13.
The pre-B?tzinger complex (PBC) is postulated as the center of respiratory rhythmogenesis. Previously, we found a reduction or plateau of cytochrome oxidase (CO) activity in the PBC and other respiratory nuclei at postnatal days 3-4, despite a general increase of CO with age, suggesting a period of synaptic readjustment. The present study examined the expression of CO and a number of neurochemicals in the PBC at closer time intervals. At postnatal days 3-4 and, more prominently, at postnatal day 12, expression of CO, glutamate, and N-methyl-D-aspartate receptor subunit 1 was reduced, whereas expression of GABA, GABA(B) receptor, glycine receptor, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit 2 was increased. These findings are consistent with our hypothesis that decreased CO activity is associated with an increase in inhibitory drive (mediated by GABA and glycine, their receptors, and possibly blockage of Ca(2+) entry by glutamate receptor subunit 2) and a decrease in excitatory drive (mediated by glutamate and its receptors). Our findings point to two critical periods during postnatal development of the rat when their respiratory system may be more vulnerable to respiratory insults.  相似文献   

14.
In awake rats, >80% bilateral reduction of neurokinin-1 receptor (NK1R)-expressing neurons in the pre-B?tzinger complex (pre-B?tzC) resulted in hypoventilation and an "ataxic" breathing pattern (Gray PA, Rekling JC, Bocchiaro CM, Feldman JL, Science 286: 1566-1568, 1999). Accordingly, the present study was designed to gain further insight into the role of the pre-B?tzC area NK1R-expressing neurons in the control of breathing during physiological conditions. Microtubules were chronically implanted bilaterally into the medulla of adult goats. After recovery from surgery, the neurotoxin saporin conjugated to substance P, specific for NK1R-expressing neurons, was bilaterally injected (50 pM in 10 microl) into the pre-B?tzC area during the awake state (n = 8). In unoperated goats, 34 +/- 0.01% of the pre-B?tzC area neurons are immunoreactive for the NK1R, but, in goats after bilateral injection of SP-SAP into the pre-B?tzC area, NK1R immunoreactivity was reduced to 22.5 +/- 2.5% (29% decrease, P < 0.01). Ten to fourteen days after the injection, the frequency of abnormal breathing periods was sixfold greater than before injection (107.8 +/- 21.8/h, P < 0.001). Fifty-six percent of these periods were breaths of varying duration and volume with an altered respiratory muscle activation pattern, whereas the remaining were rapid, complete breaths with coordinated inspiratory-expiratory cycles. The rate of occurrence and characteristics of abnormal breathing periods were not altered during a CO2 inhalation-induced hyperpnea. Pathological breathing patterns were eliminated during non-rapid eye movement sleep in seven of eight goats, but they frequently occurred on arousal from non-rapid eye movement sleep. We conclude that a moderate reduction in pre-B?tzC NK1R-expressing neurons results in state-dependent transient changes in respiratory rhythm and/or eupneic respiratory muscle activation patterns.  相似文献   

15.
Summary Oögenesis in the oviparous marine teleost, Blennius pholis L., is examined. Eleven developmental stages are identified by ultrastructural observations when changes in the distributions of the organelles and inclusions are described. An exogenous source for the protein yolk precursors is indicated, but less clear is the endogenous contribution. Changes in the follicle epithelium are described together with the formation of the zona which is considered to be follicular in origin. Two types of follicle cell are distinguished and these probably function differently in the process of zona formation. The zona becomes divided into the externa and interna, the latter probably resulting from the chemical ordering by disulphide bonding of the proteinaceous material of the former.We are indebted to Professor E.W. Knight-Jones in whose department the work was carried out, and to the Natural Environment Research Council for support for one of us (S.E.S.).  相似文献   

16.
Zusammenfassung Die drei hochalpinen Polster-ZwergsträucherVeronica caespitosa Boiss.,V. bombycina Boiss. &Kotschy aus Kleinasien und dem Libanon sowieV. thessalica aus Nord-Griechenland und Albanien haben polytele Rumpfsynfloreszenzen (Troll, 1963), das heißt eine oder wenige laterale (axilläre) wenigblütige Trauben, deren Abstammungsachse in einen sterilen, wenige Blattpaare tragenden Gipfelsproß endet, der in der nächsten Vegetationsperiode monopodial weiterwächst und gegen die Spitze zu abermals laterale Trauben hervorbringt (Prolifikation). Diese Bauverhältnisse wurden bisher übersehen, da die blühenden Sprosse dieser hochalpinen Zwergstrauch-Polsterpflanzen gestaucht und dicht beblättert sind und der sterile Sproßgipfel von den Blütentrauben zur Seite gedrängt wird, so daß bei oberflächlicher Betrachtung der Eindruck eines endständigen köpfchenartig gedrängten Blütenstandes entsteht. Da die Stellung der Infloreszenzen für die GattungVeronica phylogenetisch und taxonomisch wichtig zu sein scheint, können die behandelten drei Arten nicht in der (akrobotryschen) SektionVeronicastrum verbleiben, die durch terminale Infloreszenzen charakterisiert ist, sondern müssen in die pleurobotrysche, durch ausschließlich laterale Infloreszenzen ausgezeichnete SektionenVeronica=(Chamaedrys) eingereiht werden.Ein fälschlich alsV. satureioides Vis. bestimmter Beleg in den Herbarien W und WU vonV. thessalica vom Gipfel des Berges Gjalica e Lumës (zirka 2470 m s. m.) in Nord-Albanien erweitert das bekannte Areal beträchtlich, denn die Art war bisher nur von dem etwa 250 Kilometer weiter südöstlich gelegenen Thessalischen Olymp in Griechenland bekannt.
Summary The three speciesVeronica caespitosa Boiss. andV. bombycina Boiss. &Kotschy from high mountains of Asia Minor and the Lebanon andV. thessalica from high mountains of Northern Greece and Albania have not terminal but only one or a few lateral (axillary) raceme(s), the shoot ending sterile, continuing (prolificating) next year monopodially and developping again (a) lateral raceme(s) (fig. 1a, b). This fact hitherto has been concealed by the habit of these dwarfish undershrubs with densly crowded foliation, the raceme(s) overlapping and putting aside the short terminal shoot (fig. 1a). Thus the three species mentioned have to be transferred from the sectionVeronicastrum with terminal racemes to the sectionVeronica (=Chamaedrys), characterized by bearing only lateral racemes. V. thessalica until now was recorded only from the Thessalic Olympos (Greece). A speciemen in the herbaria W and WU from the peak of the mountain Gjalica e Lumës (2470 m s. m.) in Northern Albania, misidentified asV. satureioides Vis., makes it probable, that the area of this species covers also the high mountains between Albania and the Thessalic Olympos.
  相似文献   

17.
18.
Zusammenfassung Nicht nur die Sproßglieder, sondern auch, die Blütenblätter vonRhipsalis cereuscula enthalten Viruskörper. In den Zellen der Blütenblätter bestehen diese vielfach aus einem dichten Haufwerk feinster Eiweißkristalle, die entweder unorientiert bleiben oder sich zu Taktoiden-Spindeln gruppieren.Die Laubblätter vonOpuntia subulata enthalten Eiweißspindeln. Daß auch diese als Viruskörper aufzufassen sind, dafür spricht das Auftreten von x-bodies in den Epidermiszellen. Die x-Körper vonOpuntia subulata stehen in innigem Kontakt mit dem Zellkern. In den x-Körpern entstehen feinste Eiweißkristalle (Viruskristalle), die sich zu größeren streifig gebauten spindeligen oder anders geformten Gebilden vereinigen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号