首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although nontyphoidal Salmonella (NTS; including Salmonella Typhimurium) mainly cause gastroenteritis, typhoidal serovars (Salmonella Typhi and Salmonella Paratyphi A) cause typhoid fever, the treatment of which is threatened by increasing drug resistance. Our understanding of S. Typhi infection in human remains poorly understood, likely due to the host restriction of typhoidal strains and the subsequent popularity of the S. Typhimurium mouse typhoid model. However, translating findings with S. Typhimurium across to S. Typhi has some limitations. Notably, S. Typhi has specific virulence factors, including typhoid toxin and Vi antigen, involved in symptom development and immune evasion, respectively. In addition to unique virulence factors, both typhoidal and NTS rely on two pathogenicity‐island encoded type III secretion systems (T3SS), the SPI‐1 and SPI‐2 T3SS, for invasion and intracellular replication. Marked differences have been observed in terms of T3SS regulation in response to bile, oxygen, and fever‐like temperatures. Moreover, approximately half of effectors found in S. Typhimurium are either absent or pseudogenes in S. Typhi, with most of the remaining exhibiting sequence variation. Typhoidal‐specific T3SS effectors have also been described. This review discusses what is known about the pathogenesis of typhoidal Salmonella with emphasis on unique behaviours and key differences when compared with S. Typhimurium.  相似文献   

2.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

3.
Salmonella Typhi, an exclusive human pathogen and the cause of typhoid fever, expresses a functional cytolethal distending toxin for which only the active subunit, CdtB, has been identified. Here, we show that PltA and PltB, which are encoded in the same pathogenicity islet as cdtB, associate with CdtB to form a multipartite toxin. PltA and PltB are homologs of components of the pertussis toxin, including its ADP-ribosyl transferase subunit. We also show that PltA and PltB are required for the delivery of CdtB from an intracellular compartment to target cells via autocrine and paracrine pathways. We hypothesize that this toxin, which we have named "typhoid toxin," and its delivery mechanism may contribute to S. Typhi's unique virulence properties.  相似文献   

4.
5.

Background

Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage.

Methodology/Principal Findings

To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479), an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70%) chronic carriers, 0 of 8 bile culture-negative controls (0%), 0 of 8 healthy Bangladeshis (0%), and 1 of 8 (12.5%) Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present.

Conclusions/Significance

Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic S. Typhi carriers.  相似文献   

6.
Delivery of microbial products into the mammalian cell cytosol by bacterial secretion systems is a strong stimulus for triggering pro-inflammatory host responses. Here we show that Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, tightly regulates expression of the invasion-associated type III secretion system (T3SS-1) and thus fails to activate these innate immune signaling pathways. The S. Typhi regulatory protein TviA rapidly repressed T3SS-1 expression, thereby preventing RAC1-dependent, RIP2-dependent activation of NF-κB in epithelial cells. Heterologous expression of TviA in S. enterica serovar Typhimurium (S. Typhimurium) suppressed T3SS-1-dependent inflammatory responses generated early after infection in animal models of gastroenteritis. These results suggest that S. Typhi reduces intestinal inflammation by limiting the induction of pathogen-induced processes through regulation of virulence gene expression.  相似文献   

7.
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonella Typhi, the aetiological agent of human typhoid fever. While type three secretion system‐1 (T3SS‐1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non‐typhoidal Salmonellae. Here, we show that T2942, an AIL‐like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS‐1 independent was proved by ectopic expression of T2942 in the non‐invasive E. coli BL21 and double‐mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host‐binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti‐T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20‐amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin‐binding T2544 for adhesion and T3SS‐1 for invasion. Finally, T2942 was required and synergistically worked with T3SS‐1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20‐mer peptide may be suitable for vaccine development.  相似文献   

8.
Cytolethal‐distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram‐negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella‐containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71‐CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71‐CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71‐CDT also secreted OMVs‐like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin‐loaded OMVs by bystander cells was dependent on dynamin‐1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria.  相似文献   

9.
Typhoid is a systemic infection caused by Salmonella Typhi and Salmonella Paratyphi A, human-restricted bacteria that are transmitted faeco-orally. Salmonella Typhi and S. Paratyphi A are clonal, and their limited genetic diversity has precluded the identification of long-term transmission networks in areas with a high disease burden. To improve our understanding of typhoid transmission we have taken a novel approach, performing a longitudinal spatial case-control study for typhoid in Nepal, combining single-nucleotide polymorphism genotyping and case localization via global positioning. We show extensive clustering of typhoid occurring independent of population size and density. For the first time, we demonstrate an extensive range of genotypes existing within typhoid clusters, and even within individual households, including some resulting from clonal expansion. Furthermore, although the data provide evidence for direct human-to-human transmission, we demonstrate an overwhelming contribution of indirect transmission, potentially via contaminated water. Consistent with this, we detected S. Typhi and S. Paratyphi A in water supplies and found that typhoid was spatially associated with public water sources and low elevation. These findings have implications for typhoid-control strategies, and our innovative approach may be applied to other diseases caused by other monophyletic or emerging pathogens.  相似文献   

10.
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a life-threatening human disease. The lack of animal models due to S. Typhi's strict human host specificity has hindered its study and vaccine development. We find that immunodeficient Rag2(-/-) γc(-/-) mice engrafted with human fetal liver hematopoietic stem and progenitor cells are able to support?S. Typhi replication and persistent infection. A?S. Typhi mutant in a gene required for virulence in humans was unable to replicate in these mice. Another mutant unable to produce typhoid toxin exhibited increased replication, suggesting a role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted human innate and adaptive immune responses to S. Typhi, resulting in the production of cytokines and pathogen-specific antibodies. We expect that this mouse model will be a useful resource for understanding S.?Typhi pathogenesis and for evaluating potential vaccine candidates against typhoid fever.  相似文献   

11.
Salmonella enterica is a foodborne intracellular pathogen that can invade intestinal epithelial cells and survive in macrophages of susceptible hosts. Although belonging to the same species, individual Salmonella enterica serovars behave as very different pathogens. Indeed, they can cause very different diseases (from mild gastroenteritis to deadly systemic diseases) and have distinctive host selectivity. Salmonella enterica serovars Typhi (S. Typhi) is a unique serovar that has evolved to infect only humans and cause typhoid fever, a life‐threatening systemic disease killing more than 200 000 people every year. The mechanisms that make S. Typhi able to infect only humans are mostly unknown. Recently, an antimicrobial traffic pathway dependent on the Rab GTPase Rab32 and its exchange factor BLOC‐3 was found to be critical to kill S. Typhi in macrophages from non‐susceptible hosts, suggesting that this pathway delivers an antimicrobial factor to the S. Typhi vacuole. Here we discuss this finding in the light of the current knowledge of pathogen killing mechanisms.  相似文献   

12.
With the development of de novo binders for protein targets from non‐related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single‐chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking “disembodied” amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein‐antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen‐based detection agents for typhoid diagnostics.  相似文献   

13.
Salmonella vaccines for use in humans: present and future perspectives   总被引:7,自引:0,他引:7  
In recent years there has been significant progress in the development of attenuated Salmonella enterica serovar Typhi strains as candidate typhoid fever vaccines. In clinical trials these vaccines have been shown to be well tolerated and immunogenic. For example, the attenuated S. enterica var. Typhi strains CVD 908-htrA (aroC aroD htrA), Ty800 (phoP phoQ) and chi4073 (cya crp cdt) are all promising candidate typhoid vaccines. In addition, clinical trials have demonstrated that S. enterica var. Typhi vaccines expressing heterologous antigens, such as the tetanus toxin fragment C, can induce immunity to the expressed antigens in human volunteers. In many cases, the problems associated with expression of antigens in Salmonella have been successfully addressed and the future of Salmonella vaccine development is very promising.  相似文献   

14.
The patients' sera had been referred to the National Salmonella Centre for routine Widal serology. Sera were predominately from patients suspected of having been infected with Salmonella Typhi, but also included one serum from patient with typhoid fever who was culture positive for Salmonella Typhi. The immunoblotting procedure using Salmonella Typhi somatic (O=9,12 LPS) and flagellar (H=d) antigens was used for preliminary testing of selected patients sera previously evaluated by Widal agglutination assay as containing different levels of antibodies against O and/or H antigens of Salmonella Typhi. Following Chart et al., immunoblotting reactions were graded between 0 and 3, with 0 indicating an absence of antibody binding, and 3 where antibody binding was readily observed. Sera giving reaction of 2 or 3 were considered to be antibody positive for this study. Positive immunoblotting reaction to O=9,12 LPS antigen was obtained only with the serum of patient with typhoid fever. Presence of specific anti-LPS antibodies was also observed in two other patients' sera diluted 1:50, and in case of one of them also in dilution 1:200, but intensity of antigen-antibody reaction was under positive result criterion. The most other sera positive to O=9,12 antigen in law dilutions (1:50, 1:100) by Widal assay, showed the traces of non-specific reaction by immunoblotting. Presence of positive antigen-antibody reaction was indicated for five sera in dilution 1:50 when tested with the >55 kDa H=d flagellar protein subunit, including the serum of patient with typhoid fever. Only in this serum the high level of specific antibodies was detected also in dilution 1:200, what was not observed in case of the other four, which appeared negative. All the other sera were shown not to contain antibodies to flagella antigen. Although the presented results are preliminary and additional study of more sera of people infected with Salmonella Typhi is needed, it can be concluded after Chart et al., that an immunoblotting procedure incorporating O=9,12 LPS and flagellar H=d antigens is a useful method for providing serological evidence of infection with Salmonella Typhi. In our opinion it can serve as a rapid test for the diagnosis of typhoid fever.  相似文献   

15.
伤寒沙门菌基因组DNA芯片的制备与基因表达谱分析应用   总被引:7,自引:0,他引:7  
伤寒沙门菌是一种具有鞭毛的革兰阴性人类肠道致病菌,也是一种重要的原核生物研究用模式菌.基因组芯片能够系统、全面且高效地观察生物的基因表达及进行基因组结构比较.利用伤寒沙门菌现有的全基因组序列,以Ty2菌株的基因组为基准,选取CT18菌株和z66阳性菌株的特异性蛋白编码基因,设计特异性引物,经PCR有效扩增出4 201个基因,产物纯化后点样于多聚赖氨酸玻片制备伤寒沙门菌基因组DNA芯片,并验证了芯片样点位次与效果.通过对基因表达谱分析的各种条件进行优化,建立相应的表达谱分析方法,并用于比较伤寒沙门菌野生株在高渗、低渗条件下的基因表达差异,结果与以前的报道基本一致.结果表明,成功建立了伤寒沙门菌基因组DNA芯片及表达谱分析方法,可为有关伤寒沙门菌基因表达调控及致病性机理、进化和基因多样性等方面的深入研究提供有效的技术支持.  相似文献   

16.
17.
Live attenuated Salmonella enterica serovar Typhi Ty21a (Ty21a) is an important vaccine strain used in clinical studies for typhoid fever and as a vaccine vector for the expression of heterologous antigens. To facilitate the use of Ty21a in such studies, it is desirable to develop improved strategies that enable the stable chromosomal integration and expression of multiple heterologous antigens. The phage λ Red homologous recombination system has previously been used in various gram-negative bacteria species to mediate the accurate replacement of regions of chromosomal DNA with PCR-generated ‘targeting cassettes’ that contain flanking regions of shared homologous DNA sequence. However, the efficiency of λ Red-mediated recombineering in Ty21a is far lower than in Escherichia coli and other Salmonella typhimurium strains. Here, we describe an improved strategy for recombineering-based methods in Ty21a. Our reliable and efficient method involves the use of linear DNA-targeting cassettes that contain relatively long flanking ‘arms’ of sequence (ca. 1,000 bp) homologous to the chromosomal target. This enables multiple gene-targeting procedures to be performed on a single Ty21a chromosome in a straightforward, sequential manner. Using this strategy, we inserted three different influenza antigen expression cassettes as well as a green fluorescent protein gene reporter into four different loci on the Ty21a chromosome, with high efficiency and accuracy. Fluorescent microscopy and Western blotting analysis confirmed that strong inducible expression of all four heterologous genes could be achieved. In summary, we have developed an efficient, robust, and versatile method that may be used to construct recombinant Ty21a antigen-expressing strains.  相似文献   

18.
The multifunctional‐autoprocessing repeats‐in‐toxin (MARTXVv) toxin that harbours a varied repertoire of effector domains is the primary virulence factor of Vibrio vulnificus. Although ubiquitously present among Biotype I toxin variants, the ‘Makes caterpillars floppy‐like’ effector domain (MCFVv) is previously unstudied. Using transient expression and protein delivery, MCFVv and MCFAh from the Aeromonas hydrophila MARTXAh toxin are shown for the first time to induce cell rounding. Alanine mutagenesis across the C‐terminal subdomain of MCFVv identified an Arg‐Cys‐Asp (RCD) tripeptide motif shown to comprise a cysteine protease catalytic site essential for autoprocessing of MCFVv. The autoprocessing could be recapitulated in vitro by the addition of host cell lysate to recombinant MCFVv, indicating induced autoprocessing by cellular factors. The RCD motif is also essential for cytopathicity, suggesting autoprocessing is essential first to activate the toxin and then to process a cellular target protein resulting in cell rounding. Sequence homology places MCFVv within the C58 cysteine protease family that includes the type III secretion effectors YopT from Yersinia spp. and AvrPphB from Pseudomonas syringae. However, the catalytic site RCD motif is unique compared with other C58 peptidases and is here proposed to represent a new subgroup of autopeptidase found within a number of putative large bacterial toxins.  相似文献   

19.
20.
A number of bacteriophages have been identified that target the Vi capsular antigen of Salmonella enterica serovar Typhi. Here we show that these Vi phages represent a remarkably diverse set of phages belonging to three phage families, including Podoviridae and Myoviridae. Genome analysis facilitated the further classification of these phages and highlighted aspects of their independent evolution. Significantly, a conserved protein domain carrying an acetyl esterase was found to be associated with at least one tail fiber gene for all Vi phages, and the presence of this domain was confirmed in representative phage particles by mass spectrometric analysis. Thus, we provide a simple explanation and paradigm of how a diverse group of phages target a single key virulence antigen associated with this important human-restricted pathogen.Bacteriophages are dependent for their survival on the presence of susceptible host bacteria in their environment. The first stage of recognition of the bacterial host normally involves binding of a specific phage attachment protein to a receptor molecule on the bacterial surface. Bacteria can evade phage infection by various mechanisms, including accumulating escape mutations in the receptor, acquiring phage inhibitory proteins, or directly modifying the receptor, for example, lipopolysaccharide (LPS) (43). In addition, phage can adapt to recognize different receptors through a number of genetic mechanisms involving evolution of their attachment proteins (20) or by tropism switching (21, 22).Phage can exploit capsular exopolysaccharides as receptors, some of which are associated with virulence in pathogens (5, 23, 35). A notable example is the Vi capsule found in Salmonella enterica serovar Typhi (S. Typhi) and some isolates of S. Dublin and Citrobacter freundii (29). The Vi capsule of S. Typhi is an important virulence factor, facilitating the bacteria to escape opsonization and other forms of immune surveillance (14, 30) as well as potentially helping the bacteria to evade phage that would otherwise target the O:9 LPS, which the Vi capsule can, at least in part, mask (27). In the middle of the last century, a set of lytic phages were isolated that utilized the Vi capsule as a receptor (6). These Vi phages were exploited in diagnostic laboratories as a “typing set” to distinguish between different strains of S. Typhi isolated from typhoid patients (8). A secondary typing set was generated from Vi typing phage II by adapting this phage to grow on different S. Typhi hosts (6). At this time, typhoid was still common in many parts of Europe and North America, and clinicians tested some of these Vi phages for their potential in phage therapy experiments with human typhoid patients (11). Although this work showed significant promise, phage therapy gradually disappeared from clinical practice in many countries as antibiotics became readily available.S. Typhi is a monophyletic serovar of the broad enteric species S. enterica (16, 31). Interestingly, S. Typhi is host restricted to humans and has no known zoonotic source. Unlike many other S. enterica serovars, S. Typhi normally causes a systemic infection and does not persist in the intestine efficiently, where high levels of bacteriophage are present. Although it is rare in developed countries, S. Typhi is still a significant cause of mortality in many developing countries (26). Most current clinical isolates are Vi positive when first isolated (2), but it is noteworthy that the Vi capsule biosynthesis and export genes are carried by an operon within a potentially unstable island called Salmonella pathogenicity island 7 (SPI-7) (29).Although some phenotypic characterization of the Vi phage has been undertaken (1), very little has been performed at the molecular level. We previously showed that Vi typing phage II-E1 is related to the S. Typhimurium phage ES18 (4, 28), with synteny in many capsid and tail proteins. We have now further characterized the other members of this S. Typhi Vi phage collection, designated types I, III, IV, V, VI, and VII (abbreviated from here on as Vi phages I, III, IV, etc.) (6, 11), by utilizing electron microscopy and genomic analysis. This analysis shows that this collection of Vi phages represents a diverse group of bacteriophages that have adapted to growth on S. Typhi through convergent evolution within their tail spike protein genes and the acquisition of conserved acetyl esterase domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号