共查询到20条相似文献,搜索用时 171 毫秒
1.
Goedken ER Levitus M Johnson A Bustamante C O'Donnell M Kuriyan J 《Journal of molecular biology》2004,336(5):1047-1059
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism. 相似文献
2.
The beta subunit of Escherichia coli DNA polymerase III holoenzyme was fused to the green fluorescent protein GFP. The gene fusion under the control of the heterologous lac promoter was used to replace the wild-type allele in the chromosome. The formation of GFP-beta fluorescent foci in GFP-beta expressing cells required DNA replication and their number per cell was dependent on cell growth. Examination of GFP-beta foci in a synchronous round of replication suggested that DNA replication was accompanied by the recruitment of GFP-beta foci near the midcell, followed by the rapid migration of the foci in opposite directions to the 1/4 and 3/4 positions during DNA replication. 相似文献
3.
DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis. 相似文献
4.
B. A. Bridges R. Woodgate M. Ruiz-Rubio F. Sharif S. G. Sedgwick U. Hü bscher 《Mutation research》1987,181(2):219-226
UV mutagenesis in E. coli is believed to occur in two discrete steps. The second step involves continued DNA synthesis beyond a blocking lesion in the template strand. This bypass step requires induced levels of umuD and umuC gene products and activated recA protein. DNA polymerase III may be involved since a dnaE mutator strain (believed to have defective base selection) is associated with enhanced UV mutagenesis in conjunction with a genetic background permitting the bypass step. In non-UV-mutable umu and lexA strains, UV mutagenesis can be demonstrated if delayed photorevesal is given. This is interpreted as indicating that an earlier misincorporation step can occur in such strains but the resulting mutations do not survive because the bypass step is blocked. The misincorporation step does not require any induced SOS gene products and can occur either at the replication fork or during repair replication following excision of a DNA lesion. Neither a dnaE mutator gene (leading to a defective subunit of DNA polymerase III holoenzyme) nor a mutD5 mutator gene (leading to a defective ε proofreading subunit) had any effect on he misincorporation step. Although this is consistent with DNA polymerase III holoenzyme not being involved in the misincorporation step, other interpretations involving the inhibition of ε proofreading activity by recA protein are possible.
In vitro studies are reported in which sites of termination of synthesis by DNA polymerase III holoenzyme on UV-irradiated M13 mp8 DNA were examined in the presence of inhibitors of the 3′–5′ proofreading exonuclease (including recA protein). No evidence was found for incorporation of bases opposite photoproducts suggesting that either inhibition is more complete in the cell and/or that other factors are involved in the misincorporation step. 相似文献
5.
Previously, we localized the beta2 interacting portion of the catalytic subunit (alpha) of DNA polymerase III to the C-terminal half, downstream of the polymerase active site. Since then, two different beta2 binding sites within this region have been proposed. An internal site includes amino acid residues 920-924 (QADMF) and an extreme C-terminal site includes amino acid residues 1154-1159 (QVELEF). To permit determination of their relative contributions, we made mutations in both sites and evaluated the biochemical, genetic, and protein binding properties of the mutant alpha subunits. All purified mutant alpha subunits retained near wild-type polymerase function, which was measured in non-processive gap-filling assays. Mutations in the internal site abolished the ability of mutant alpha subunits to participate in processive synthesis. Replacement of the five-residue internal sequence with AAAKK eliminated detectable binding to beta2. In addition, mutation of residues required for beta2 binding abolished the ability of the resulting polymerase to participate in chromosomal replication in vivo. In contrast, mutations in the C-terminal site exhibited near wild-type phenotypes. alpha Subunits with the C-terminal site completely removed could participate in processive DNA replication, could bind beta2, and, if induced to high level expression, could complement a temperature-sensitive conditional lethal dnaE mutation. C-terminal defects that only partially complemented correlated with a defect in binding to tau, not beta2. A C-terminal deletion only reduced beta2 binding fourfold; tau binding was decreased ca 400-fold. The context in which the beta2 binding site was presented made an enormous difference. Replacement of the internal site with a consensus beta2 binding sequence increased the affinity of the resulting alpha for beta2 over 100-fold, whereas the same modification at the C-terminal site did not significantly increase binding. The implications of multiple interactions between a replicase and its processivity factor, including applications to polymerase cycling and interchange with other polymerases and factors at the replication fork, are discussed. 相似文献
6.
Many details of structure, function and substrate specificity of eukaryotic proteasomal systems have been elucidated. This information far-exceeds that available for the archaeal and bacterial counterparts. While structural and functional studies have provided some insight into the workings of prokaryotic proteasomes, the question of substrate targeting and global cellular influence remain largely unaddressed. In this communication, we report an over 720-fold increase in the half-life of the DNA-sliding clamp protein proliferating cell nuclear antigen after knockout of the panA gene, encoding a proteasome-activating nucleotidase A, on the chromosome of the halophilic archaeon Haloferax volcanii . This discovery marks the first identification of a protein stabilized by an archaeal proteasome mutation and provides a starting point for investigations into substrate recognition mechanisms. The findings also begin to address the functional role of proteasomal systems within the scope of the archaeal cell. 相似文献
7.
8.
Histone H2A‐H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin 下载免费PDF全文
Cecile Evrin Joseph D Maman Aurora Diamante Luca Pellegrini Karim Labib 《The EMBO journal》2018,37(19)
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication. 相似文献
9.
Janet C. Lindow Paul R. Dohrmann Charles S. McHenry 《The Journal of biological chemistry》2015,290(27):16851-16860
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized. 相似文献
10.
3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases 下载免费PDF全文
Sebastian Klinge Rafael Núez-Ramírez Oscar Llorca Luca Pellegrini 《The EMBO journal》2009,28(13):1978-1987
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases. 相似文献
11.
Gupta R Hamdan SM Dixon NE Sheil MM Beck JL 《Protein science : a publication of the Protein Society》2004,13(11):2878-2887
The interactions between the N-terminal domain of the epsilon (epsilon186) and theta subunits of DNA polymerase III of Escherichia coli were investigated using electrospray ionization mass spectrometry. The epsilon186-theta complex was stable in 9 M ammonium actetate (pH 8), suggesting that hydrophobic interactions have a predominant contribution to the stability of the complex. Addition of primary alkanols to epsilon186-theta in 0.1 M ammonium acetate (pH 8), led to dissociation of the complex, as observed in the mass spectrometer. The concentrations of methanol, ethanol, and 1-propanol required to dissociate 50% of the complex were 8.9 M, 4.8 M, and 1.7 M, respectively. Closer scrutiny of the effect of alkanols on epsilon186, theta, and epsilon186-theta showed that epsilon186 formed soluble aggregates prior to precipitation, and that the association of epsilon186 with theta stabilized epsilon186. In-source collision-induced dissociation experiments and other results suggested that the epsilon186-theta complex dissociated in the mass spectrometer, and that the stability (with respect to dissociation) of the complex in vacuo was dependent on the solution from which it was sampled. 相似文献
12.
Fossum S De Pascale G Weigel C Messer W Donadio S Skarstad K 《FEMS microbiology letters》2008,281(2):210-214
We have developed a novel type of a positive screen for the discovery of antibacterial compounds that target the Escherichia coli replication initiator protein DnaA. DnaA is an essential replication protein, conserved in (almost) all bacteria--including all human pathogens--and no existing antibiotics target the main components of the DNA replication machinery. This makes DnaA an attractive target and compounds discovered by this screen will constitute a new group of antibiotics. The conditional mutant, dnaA219, has a cold sensitive phenotype due to overreplication. In the screen, a DnaA inhibitor will reduce DnaA overactivity and thus restore growth at the nonpermissive temperature. This positive type of selection utilizes the rare phenomenon of lethal overactivity. In addition, the mutant strain has been made independent of DnaA activity by introduction of an alternative initiation pathway that allows growth under conditions of complete knockdown of DnaA. The resulting dnaA219rnhA strain is the basis of a robust, cell-based assay amenable to high-throughput screening. The screening assay has been validated against (1) a library of microbial fermentation extracts and (2) a known intracellular DnaA inhibitor. 相似文献
13.
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3′→5′ exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3′→5′ exonuclease activity of the hPolε holoenzyme. Together, the 3′→5′ exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase. 相似文献
14.
15.
16.
Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway – application of PgpB and YbjG phosphatases 下载免费PDF全文
Farnesol is a sesquiterpenoid alcohol that has important industrial and medical potential. It is usually synthesized from farnesyl diphosphate (FPP) by farnesol synthase in plants. FPP accumulation can cause up‐regulation of phosphatases capable of FPP hydrolysis, resulting in farnesol production in Escherichia coli. We found that PgpB and YbjG, two integral membrane phosphatases, can hydrolyze FPP into farnesol. Overexpression of FPP synthase (IspA) and PgpB, along with a heterologous mevalonate pathway, enabled recombinant E. coli to produce 526.1 mg/L of farnesol. This result indicates that the phosphatases PgpB and YbjG can be used to construct a novel farnesol synthesis pathway for mass production in E. coli. 相似文献
17.
Kathleen Conway Pramila Sen Max Costa 《Journal of biochemical and molecular toxicology》1986,1(2):11-25
The degree of inhibition of semiconservative DNA replication induced by nickel chloride (NiCl2) was analyzed by radiolabeled-thymidine incorporation alone or with cesium chloride (CsCl) density gradient centrifugation. The onset and duration of this Ni2+-induced inhibition was time- and concentration- dependent, but the degree of inhibition was not. A maximal reduction in the rate of DNA synthesis was observed within the first hour of treatment with 2.5 mM NiCl2, which was the highest noncytotoxic concentration utilized. After six hours, 500 μM and 1 mM as well as 2.5 mM NiCl2 all produced the same 50% to 60% reduction in [3H]-thymidine incorporation into DNA. The inhibitory effect of nickel ions on DNA synthesis was reversible. The rate of DNA synthesis following a 500 μM or 1 mM NiCl2 treatment began to increase after washout of nickel, but a six-hour exposure of cells to 2.5 mM NiCl2 produced a sustained 50% to 60% suppression of DNA synthetic activity for at least 36 hours. At all concentrations of NiCl2 used in this study, some inhibition of DNA synthesis persisted for at least 48 hours, but by 72 hours after treatment, the rate of [3H]-thymidine incorporation was actually 10% above the control. Examination of autoradiographic slides of cells treated with 2.5 mM NiCl2 for six hours demonstrated a 60% reduction of silver grains, but there was no preferential reduction in the quantity of grains in the nucleolus or any other region. Cesium chloride density gradient analysis of the replication of nucleolar DNA in cells treated with 2.5 mM nickel supported the autoradiographic findings. The inhibitory effect of NiCl2 on DNA replication was prevented by the addition of magnesium chloride (MgCl2) to cells maintained in a simple salts/glucose medium (SGM). This effect did not appear to be due to an antagonism of the cellular uptake of nickel by Mg2+, since the maximally effective dose of Mg2+ reduced 63Ni2+ uptake by no more than 25% while the inhibition of replication was completely reversed. 相似文献
18.
A simple spectrofluorimetric method is described for the determination of DNA, based on its enhancement of the fluorescence intensity of prulifloxacin (PUFX)–Tb3+. The luminescence intensity of the PUFX–Tb3+ complex increased up to 10‐fold after adding DNA. The excitation and emission wavelengths were 345 and 545 nm, respectively. Under optimum conditions, variations in the fluorescence intensity showed a good linear relationship with the concentration of hsDNA in the range of 3.0 × 10‐9 to 1.0 × 10‐6 g/mL, with a correlation coefficient (R) of 0.997, and the detection limit was 2.1 × 10‐9 g/mL. The method was successfully applied to the determination of DNA in synthetic samples, and recoveries were in the range 97.3–102.0%. The mechanism of fluorescence enhancement of the PUFX–Tb3+ complex by DNA is also discussed. The mechanism may involve formation of a ternary complex mainly by intercalation binding together with weak electrostatic interaction, which will increase the energy transition from ligand to Tb3+, increasing the rigidity of the complex, and decreasing the radiationless energy loss through O–H vibration of the H2O molecule in the PUFX–Tb3+ compl+osed method is not only more robust and friendly to the environment, but also of relatively higher sensitivity. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
F. Mahboudi F. Barkhordari R.M. Godarzi S. Enayati F. Davami 《Journal of applied microbiology》2013,114(2):364-372
Aims
A novel chimeric‐truncated form of tissue‐type plasminogen activator (t‐PA) with improved fibrin affinity and resistance to PAI was successfully produced in CHO expression system during our previous studies. Considering advantages of prokaryotic expression systems, the aim in this study was to produce the novel protein in Escherichia coli (BL21) strain and compare the protein potency in batch and fed‐batch processes.Methods and Results
The expression cassette for the novel t‐PA was prepared in pET‐28a(+). The E. coli expression procedure was compared in traditional batch and newly developed fed batch, EnBase® Flo system. The protein was purified in soluble format, and potency results were identified using Chromolize t‐PA Assay Kit. The fed‐batch fermentation mode, coupled with a Ni‐NTA affinity purification procedure under native condition, resulted in higher amounts of soluble protein, and about a 30% of improvement in the specific activity of the resulted recombinant protein (46·66 IU mg?1) compared to traditional batch mode (35·8 IU mg?1).Conclusions
Considering the undeniable advantages of expression in the prokaryotic expression systems such as E. coli for recombinant protein production, applying alternative methods of cultivation is a promising approach. In this study, fed‐batch cultivation methods showed the potential to replace miss‐folded formats of protein with proper folded, soluble form with improved potency.Significance and Impact of the Study
Escherichia coli expression of recombinant proteins still counts for nearly 40% of marketed biopharmaceuticals. The major drawback of this system is the lack of appropriate post‐translational modifications, which may cause potency loss/decline. Therefore, applying alternative methods of cultivation as investigated here is a promising approach to overcome potency decrease problem in this protein production system. 相似文献20.
We recently developed a simple new method which is designed to separate and concentrate bacteria from a sample by centrifugation in a gel system. Bacterial enzyme activity is then detected inside the gel without further manipulation using a colorimetric or fluorogenic substrate. The method provides a rapid, direct means of detecting bacteria in clinical samples, dispensing with the 24-h period normally required to isolate colonies on agar. Various applications of the method are described below, e.g. screening of negative urine samples, identification of Escherichia coli in urine samples, identification of Staphylococcus aureus in blood culture broths and detection of oxacillin-resistant S. aureus in blood culture broths. The advantages of the gel system and other applications are discussed. 相似文献