首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄莺  刘珊  杨鹏  杜韫  孙志伟  俞炜源 《生物工程学报》2009,25(10):1532-1537
为了表达日本脑炎病毒囊膜蛋白(E蛋白)结构域DⅢ区,了解其作为亚单位疫苗的可能性,本研究根据SA14-14-2病毒株序列(GenBank Accession No.D90195)设计两条引物,以全长JEV感染性克隆pBR-JTF为模板,通过PCR扩增出JEVE蛋白DⅢ的cDNA片段,构建了原核表达载体pET-JEDⅢ,转化大肠杆菌Rosetta(DE3)进行融合表达。融合蛋白为可溶性表达,表达量约占菌体蛋白的75%。用纯化后蛋白免疫新西兰兔和BALB/C鼠,通过ELISA,Western blotting,噬斑减少实验,及乳鼠攻毒实验验证JEDⅢ的抗原性和免疫原性。Western blotting及ELISA结果表明纯化后的表达产物具有良好的抗原性,纯化的JEDⅢ蛋白免疫新西兰兔,可以获得高达1:7×105滴度的抗JEV特异性抗体;JEDⅢ蛋白免疫BALB/C鼠,可以获得1:8.2×104滴度的抗JEV特异性抗体。并且获得1:256滴度的中和抗体,乳鼠攻毒实验能达到75%的保护效果。以上结果说明本研究表达、纯化的重组JEDⅢ蛋白,免疫小鼠以及兔后,能产生抗JEV的特异性抗体,中和性抗体,能够保护部分乳鼠接受毒...  相似文献   

2.
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.  相似文献   

3.
4.
Epitope-based vaccination is a promising means to achieve protective immunity and to avoid immunopathology in Japanese encephalitis virus (JEV) infection. Several B-cell and T-cell epitopes have been mapped to the E protein of JEV, and they are responsible for the elicitation of the neutralizing antibodies and CTLs that impart protective immunity to the host. In the present study, we optimized a proposed multi-epitope peptide (MEP) using an epitope-based vaccine strategy, which combined six B-cell epitopes (amino acid residues 75-92, 149-163, 258-285, 356-362, 373-399 and 397-403) and two T-cell epitopes (amino acid residues 60-68 and 436-445) from the E protein of JEV. This recombinant protein was expressed in Escherichia coli, named rMEP, and its protective efficacy against JEV infection was assessed in BALB/c mice. The results showed that rMEP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. It provided complete protection against lethal challenge with JEV in mice. Our findings indicate that the multi-epitope vaccine rMEP may be an attractive candidate vaccine for the prevention of JEV infection.  相似文献   

5.
Transgenic plants have become attractive as bioreactors to produce heterologous proteins that can be developed as edible vaccines. In the present study, transgenic rice expressing the envelope protein (E) of Japanese encephalitis virus (JEV), under the control of a dual cauliflower mosaic virus (CaMV 35S) promoter, was generated by Agrobacterium-mediated transformation. Southern blot, Northern blot, Western blot and ELISA analyses confirmed that the E gene was integrated into transgenic rice and was expressed in the leaves at levels of 1.1-1.9 μg/mg of total soluble protein. After intraperitoneal immunization of mice with crude protein extracts from transgenic rice plants, JEV-specific neutralizing antibody could be detected. Moreover, E-specific mucosal immune responses could be detected in mice after oral immunization with protein extracts from transgenic rice plants. These results show the potential of using a transgenic rice-based expression system as an alternative bioreactor for JEV subunit vaccine.  相似文献   

6.
Replication-defective recombinant adenoviruses (RAds) were constructed that synthesized the pre-membrane and envelope (E) proteins of Japanese encephalitis virus (JEV). Recombinant virus RAdEa synthesized Ea, the membrane-anchored E protein, and RAdEs synthesized Es, the secretory E protein. Compared with RAdEs, RAdEa replicated poorly in HEK 293A cells and synthesized lower amounts of E protein. Oral immunization of mice with RAds generated low titers of anti-JEV antibodies that had little JEV neutralizing activity. Intra-muscular (IM) immunization of mice with either RAd generated high titers of anti-JEV antibodies. Interestingly, RAdEa induced only low titers of JEV neutralizing antibodies. Titers were significantly higher in case of RAdEs immunization. Splenocytes from mice immunized IM with RAds secreted large amounts of interferon-γ and moderate amounts of interleukin-5 in the presence of JEV and showed cytotoxic activity against JEV-infected cells. Naïve mice immunized IM with RAdEs showed complete protection against a lethal dose of JEV given intra-cerebrally. In order to study the effect of the pre-existing adenovirus 5 (Ad5) immunity on the outcome of the RAdEs immunization, mice were exposed to Ad5 through IM or intra-nasal (IN) routes before immunization with RAdEs. Mice exposed to Ad5 through the IN route, when immunized with RAdEs given IM, or those exposed to Ad5 through the IM route, when immunized with RAdEs given IN, were completely protected against lethal JEV challenge.  相似文献   

7.
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.  相似文献   

8.
This study focused on the antigenic cross‐reactivity between tick‐borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) to assess the efficacy of the commercial TBE vaccine against OHFV infection. Neutralization tests performed on sera from OHFV‐ and TBEV‐infected mice showed that neutralizing antibodies are cross‐protective. The geometric mean titers of antibodies against TBEV and OHFV from TBEV‐infected mice were similar. However, the titers of anti‐TBEV antibodies in OHFV‐infected mice were significantly lower than those of anti‐OHFV antibodies in the same animals. In mouse vaccination and challenge tests, the TBE vaccine provided 100% protection against OHFV infection. Eighty‐six percent of vaccinees seroconverted against OHFV following complete vaccination, and the geometric mean titers of neutralizing antibodies against OHFV were comparable to those against TBEV. These data suggest that the TBE vaccine can prevent OHFV infection.  相似文献   

9.
The Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis. Although there are four classes of vaccines against JEV, all of them are administered by s.c or i.m injection. Here, the effectiveness of sublingual (s.l.) administration of a JEV live‐attenuated vaccine or recombinant modified vaccinia virus Ankara (MVA) vaccine, including JEV prM/E, was investigated. The mice were immunized three times i.m. or s.c. One week after the final immunization by both s.l. and i.m. routes, the titers of IgG1 induced by the recombinant MVA vaccine were higher than those induced by the live‐attenuated vaccine, whereas the titers of IgG2a induced by the live‐attenuated vaccine were higher than those induced by the recombinant MVA vaccine. However, both vaccines induced neutralizing antibodies when given by either s.l. or i.m. routes, indicating that both vaccines induce appropriate Th1 and Th2 cell responses through the s.l. and i.m. routes. Moreover, both vaccines protected against induction of proinflammatory cytokines and focal spleen white pulp hyperplasia after viral challenge. Virus‐specific IFN‐γ+ CD4+ and CD8+ T cells appeared to increase in mice immunized via both s.l. and i.m. routes. Interestingly, virus‐specific IL‐17+ CD4+ T cells increased significantly only in the mice immunized via the s.l. route; however, the increased IL‐17 did not affect pathogenicity after viral challenge. These results suggest that s.l. immunization may be as useful as i.m. injection for induction of protective immune responses against JEV by both live‐attenuated and recombinant MVA vaccines.  相似文献   

10.
Neurons are the major target cell of Japanese encephalitis virus (JEV). Rats intracerebrally inoculated with JEV show an age‐dependent pattern of resistance to infection in which resistance is closely associated with neuronal maturation. However, because there is no reliable and convenient cell culture system that mimics the in vivo properties of JEV infection of immature and mature neurons, the mechanisms underlying this association remain poorly understood. The aim of the present study was to examine JEV infection in immortalized CSM14.1 rat neuronal cells, which can be induced to differentiate into neurons by culture under non‐permissive conditions. JEV infected undifferentiated CSM14.1 cells more efficiently than differentiated cells, resulting in production of more progeny virus in the former setting than in the latter. An infectious virus recovery assay detected more internalized virions in undifferentiated cells. On the other hand, JEV infection of differentiated cells induced more rapid and stronger expression of interferon‐β gene, along with smaller amounts of JEV RNA. Taken together, these results show that the initial phase of viral infection and the later IFN response play roles in the viral susceptibility of undifferentiated and differentiated CSM14.1 cells. Because CSM14.1 cells became more resistant to JEV infection as they mature, this culture system can be used as an in vitro model for studying age‐dependent resistance of neurons to JEV infection.  相似文献   

11.
Japanese encephalitis virus (JEV) nonstructural protein 5 (NS5) exhibits a Type I interferon (IFN) antagonistic function. This study characterizes Type I IFN antagonism mechanism of NS5 protein, using proteomic approach. In human neuroblastoma cells, NS5 expression would suppress IFNβ‐induced responses, for example, expression of IFN‐stimulated genes PKR and OAS as well as STAT1 nuclear translocation and phosphorylation. Proteomic analysis showed JEV NS5 downregulating calreticulin, while upregulating cyclophilin A, HSP 60 and stress‐induced‐phosphoprotein 1. Gene silence of calreticulin raised intracellular Ca2+ levels while inhibiting nuclear translocalization of STAT1 and NFAT‐1 in response to IFNβ, thus, indicating calreticulin downregulation linked with Type I IFN antagonism of JEV NS5 via activation of Ca2+/calicineurin. Calcineurin inhibitor cyclosporin A attenuated NS5‐mediated inhibition of IFNβ‐induced responses, for example, IFN‐sensitive response element driven luciferase, STAT1‐dependent PKR mRNA expression, as well as phosphorylation and nuclear translocation of STAT1. Transfection with calcineurin (vs. control) siRNA enhanced nuclear translocalization of STAT1 and upregulated PKR expression in NS5‐expressing cells in response to IFNβ. Results prove Ca2+, calreticulin, and calcineurin involvement in STAT1‐mediated signaling as well as a key role of JEV NS5 in Type I IFN antagonism. This study offers insights into the molecular mechanism of Type I interferon antagonism by JEV NS5.  相似文献   

12.
Japanese encephalitis virus (JEV), a single‐stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV‐induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV‐induced microglia activation. Initial screening revealed significant up‐regulation of miR‐29b in JEV‐infected mouse microglial cell line (BV‐2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha‐induced protein 3, a negative regulator of nuclear factor‐kappa B signaling as a potential target of miR‐29b. Interestingly, in vitro knockdown of miR‐29b resulted in significant over‐expression of tumor necrosis factor alpha‐induced protein 3, and subsequent decrease in nuclear translocation of pNF‐κB. JEV infection in BV‐2 cell line elevated inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐inflammatory cytokine expression levels, which diminished after miR‐29b knockdown. Collectively, our study demonstrates involvement of miR‐29b in regulating JEV‐ induced microglial activation.

  相似文献   


13.
应用毕赤酵母分泌表达日本脑炎病毒(Japanese encephalitis virus,JEV)prME蛋白,鉴定其表达效果与免疫原性,以期为JEV亚单位疫苗的研制奠定基础。RT-PCR扩增JEV SA14-14-2株prME基因,将其连接到毕赤酵母表达载体pPICZa-A,分别获得pPICZa-prME和携带JEV Cap蛋白C末端19个Aa信号肽的pPICZa-SprME质粒。表达载体用PmeⅠ酶切线性化,通过电转化转入毕赤酵母X33并诱导发酵培养。利用SDS-PAGE和Western blotting鉴定酵母发酵上清中目的蛋白的表达情况。利用GE蛋白层析纯化柱纯化目的蛋白,利用电镜观察纯化前后的目的蛋白,将不同剂量纯化后的prME蛋白与弗氏佐剂混合以及定量纯化后的prME蛋白与不同剂量的核酸佐剂混合分别免疫4周龄小鼠,定期采血,ELISA检测被免小鼠血清的抗体水平,空斑减少试验测定抗体中和效价。SDS-PAGE结果表明毕赤酵母可以分泌表达完整的prME蛋白,目的蛋白在70–100 kDa之间;Western blotting结果显示分泌表达的prME蛋白具有良好的反应原性,进一步证明prME蛋白在酵母X33中以整体的形式分泌表达,没有发生水解切割。纯化目的蛋白,根据洗脱时间和体积表明其分子量大于1×10~6 Da,因此推断prME蛋白可能形成多聚化的颗粒。电镜观察发现直径30–50 nm的病毒样颗粒(Virus like particles,VLPs)。免疫试验结果表明,纯化后的重组蛋白10–15μg/只接种小鼠在3周后抗体达到高峰值,之后逐渐下降,免疫7周后小鼠血清仍可检测到JEV抗体。将prME VLPs以10μg/只的剂量与不同剂量的核酸佐剂配伍后接种小鼠,ELISA检测结果表明核酸佐剂可明显增强JEV prME VLPs免疫应答,免疫4周后小鼠血清的中和抗体效价为1∶80–1∶160。上述结果表明毕赤酵母表达JEV prME虽不能发生水解切割,但仍可形成VLP并诱导免疫小鼠产生较高水平中和抗体。  相似文献   

14.
Japanese encephalitis is a mosquito borne disease and is the leading cause of viral encephalitis in the Asia-Pacific area. The causative agent, Japanese encephalitis virus(JEV) can be phylogenetically classified into five genotypes based on nucleotide sequence. In recent years, genotype I(GI) has displaced genotype III(GIII) as the dominant lineage, but the mechanisms behind this displacement event requires elucidation. In an earlier study, we compared host variation over time between the two genotypes and observed that GI appears to have evolved to achieve more efficient infection in hosts in the replication cycle, with the tradeoff of reduced infectivity in secondary hosts such as humans. To further investigate this phenomenon, we collected JEV surveillance data on human cases and, together with sequence data, and generated genotype/case profiles from seven Asia-Pacific countries and regions to characterize the GI/GIII displacement event. We found that, when comprehensive and consistent vaccination and surveillance data was available, and the GIII to GI shift occurred within a well-defined time period, there was a statistically significant drop in JEV human cases. Our findings provide further support for the argument that GI is less effective in infecting humans, who represent a dead end host. However, experimental investigation is necessary to confirm this hypothesis. The study highlights the value of alternative approaches to investigation of epidemics, as well as the importance of effective data collection for disease surveillance and control.  相似文献   

15.
Immunogenicity and protective efficacy of recombinant Japanese encephalitis virus (JEV) NS1 proteins generated using DNA vaccines and recombinant viruses have been demonstrated to induce protection in mice against a challenge of JEV at a lethal dose. The West Nile virus NS1 region expressed in E. coli is recognized by these protective monoclonal antibodies and, in this study, we compare immunogenicity and protective immunity of the E. coli-synthesized NS1 protein with another protective immunogen, the envelope domain III (ED3). Pre-challenge, detectable titers of JEV-specific neutralizing antibody were detected in the immunized mice with E. coli-synthesized ED3 protein (PRNT50 = 1:28) and the attenuated JEV strain T1P1 (PRNT50 = 1:53), but neutralizing antibodies were undetectable in the immunized mice with E. coli-synthesized NS1 protein (PRNT50 < 1:10). However, the survival rate of the NS1-immunized mice against the JEV challenge was 87.5% (7/8), showing significantly higher levels of protection than the ED3-immunized mice, 62.5% (5/8) (P = 0.041). In addition, E. coli-synthesized NS1 protein induced a significant increase of anti-NS1 IgG1 antibodies, resulting in an ELISA titer of 100,1000 in the immunized sera before lethal JEV challenge. Surviving mice challenged with the virulent JEV strain Beijing-1 showed a ten-fold or greater rise in IgG1 and IgG2b titers of anti-NS1 antibodies, implying that the Th2 cell activation might be predominantly responsible for antibody responses and mice protection.  相似文献   

16.
The variation in nucleotide sequence observed in the envelope (E) gene and the prM (precursor of M protein) region of different strains of Japanese encephalitis virus (JEV) was analysed. Presence of selective forces acting on these regions was investigated by computing the relative rates of synonymous (K s) and nonsynonymous (K a) substitutions. The ratioK s/K a was used as an indicator of the overall selective constraints on the amino acid sequence of JEV proteins. The possibility that different regions of the gene may be subject to varying selective pressures was tested by dividing the gene into three regions and estimating theK s/K a ratio for each region. On the basis of analysis of a limited number (17) of strains of JEV, evidence suggestive of positive selection acting on certain regions of the E gene of the virus, and in some cases on the entire gene, was obtained. Analysis ofK a diversity in the prM region of 46 JEV strains grouped into three genotypes revealed that strains included in genotype II were more heterogeneous than strains belonging to genotype I, while the differences between meanK a values for genotypes I and III and genotypes II and III were not statistically significant. Analysis of host-specific heterogeneity in the prM region revealed that pig isolates were more Xa-diverse than human isolates.  相似文献   

17.
Hepatitis B virus (HBV) produces large (L), middle (M), and small (S) envelope proteins, alternatively referred to as hepatitis B surface antigen (HBsAg). Currently, yeast-derived S protein serves as the preventive vaccine, while hepatitis B immune globulin (HBIG) concentrated from pooled plasma of vaccine recipients is employed for post-exposure prophylaxis. However, only a small proportion of the antibodies in HBIG are HBV specific. In the present study, a human monoclonal anti-S antibody (G12) was developed, produced under GLP conditions, and subjected to a panel of functional assays. In vitro results demonstrated high affinity of G12 for the S protein (KD = 7.56 nM). It reacted with envelope proteins of all 7 HBV genotypes tested (A-F, H) by immunofluorescent staining, and more than 97% of HBsAg-positive patient serum samples by enzyme-linked immunosorbent assay. G12 recognized a conformational epitope, although the exact sequence remains unknown. Strikingly, G12 was at least 1,000-fold more potent than HBIG in neutralizing HBV infectivity in both HepaRG cell line and HepG2 cells reconstituted with the HBV receptor. In a transgenic mouse model of HBV persistence, a single peritoneal injection of G12 markedly diminished serum HBsAg titers in all 7 mice, which was sustained for the observation period of 144 d in mice with low pre-treatment levels. While the therapeutic potential of G12 warrants further investigation using a large number of animals, G12 is a potent neutralizing human monoclonal antibody and a promising candidate to replace or supplement HBIG in the prevention of HBV infection.  相似文献   

18.
Lin CW  Wu SC 《Journal of virology》2003,77(4):2600-2606
The envelope (E) protein of Japanese encephalitis virus (JEV) is associated with viral binding to cellular receptors, membrane fusion, and the induction of protective neutralizing-antibody responses in hosts. Most previous studies have not provided detailed molecular information about the spatial configuration of the functional epitopes on domain III of the E protein. Here site-directed mutagenesis was performed to demonstrate that the functional epitope determinants at Ser331 and Asp332 on domain III of the JEV E protein interacted with neutralizing monoclonal antibody (MAb) E3.3. Bacterial expression of the recombinant Fab E3.3 confirmed the molecular interactions of Arg94 in complementary determining region H3 with Ser331 and Asp332 on domain III. This study elucidates the detailed molecular structures of the neutralizing epitope determinants on JEV domain III, which can provide useful information for designing new vaccines.  相似文献   

19.
Clostridium perfringens alpha‐toxin (CP, 370 residues) is one of the main agents involved in the development of gas gangrene. In this study, the immunogenicity and protective efficacy of the C‐terminal domain (CP251‐370) of the toxin and phospholipase C (PLC; CB, 372 residues) of Clostridum bifermentans isolated from cases of clostridium necrosis were examined. The recombinant proteins were expressed as glutathione S‐transferase (GST) fusion proteins. Antibodies that cross‐reacted with alpha‐toxin were produced after immunization with recombinant proteins including GST‐CP251‐370, GST‐CP281‐370, GST‐CP311‐370, CB1‐372 and GST‐CB251‐372. Anti‐GST‐CP251‐370, anti‐GST‐CP281‐370 and anti‐GST‐CP311‐370 sera neutralized both the PLC and hemolytic activities of alpha‐toxin, whereas anti‐CB1‐372 and anti‐GST‐CB251‐372 weakly neutralized these activities. Immunization with GST‐CP251‐370 and GST‐CP281‐370 provided protection against the lethal effects of the toxin and C. perfringens type A NCTC8237. Partial protection from the toxin and C. perfringens was elicited by immunization with GST‐CP311‐370 and CB1‐372. GST‐CP251‐370 and GST‐CP281‐370 are promising candidates for vaccines for clostridial‐induced gas gangrene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号