首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dysfunction of mitochondria has severe cellular consequences and is linked to ageing and neurodegeneration in human. Several surveillance strategies have evolved that limit mitochondrial damage and ensure cellular integrity. Intraorganellar proteases conduct protein quality control and exert regulatory functions, membrane fusion and fission allow mitochondrial content mixing within a cell, and the autophagic degradation of severely damaged mitochondria protects against apoptosis. Here, we will summarize the current knowledge on these surveillance strategies and their role in human disease.  相似文献   

3.
4.
The key role of mitochondria in the apoptotic process is well understood, but not many data are available regarding the specific role of mitochondrial DNA mutations in determining cell fate. We investigated whether two mitochondrial DNA mutations (L217R and L156R) associated with maternally-inherited Leigh syndrome may play a specific role in triggering the apoptotic cascade. Considering that different nuclear genetic factors may influence the expression of mtDNA mutations, we used a 143BTK(-) osteosarcoma cell line deprived from its own mtDNA in order to insert mutated mtDNAs. Analysis of mitochondrial features in these cybrids indicated that both mitochondrial DNA mutations produced evidence of biochemical, functional and ultrastructural modifications of mitochondria, and that these modifications were associated with an increased apoptotic proneness. Cybrids were highly susceptible to two different apoptotic stimuli, tumour necrosis factor-alpha and Staurosporin. The mechanism involved was the mitochondrial 'intrinsic' pathway, i.e. the caspase 9-driven cascade. More importantly, our results also indicated that the polarization state of the mitochondrial membrane, i.e. a constitutive hyperpolarization detected in cybrid clones, played a specific role. Interestingly, the different effects of the two mutations in terms of susceptibility to apoptosis probably reflect the deeper bioenergetic defect associated with the L217R mutation. This work provides the first evidence that hyperpolarization of mitochondria may be a 'risk factor' for cells with a deep ATPase dysfunction, such as cells from patients with maternally-inherited Leigh syndrome.  相似文献   

5.
《Neuron》2023,111(8):1222-1240.e9
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   

6.
In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease(PD).However,difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1.Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains.CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology.Importantly,PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival.Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.  相似文献   

7.
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.  相似文献   

8.
Oxidative stress and mitochondrial dysfunction have been linked to neurodegenerative disorders such as Parkinson's and Alzheimer's disease. However, it is not yet understood how endogenous mitochondrial oxidative stress may result in mitochondrial dysfunction. Most prior studies have tested oxidative stress paradigms in mitochondria through either chemical inhibition of specific components of the respiratory chain, or adding an exogenous insult such as hydrogen peroxide or paraquat to directly damage mitochondria. In contrast, mice that lack mitochondrial superoxide dismutase (SOD2 null mice) represent a model of endogenous oxidative stress. SOD2 null mice develop a severe neurological phenotype that includes behavioral defects, a severe spongiform encephalopathy, and a decrease in mitochondrial aconitase activity. We tested the hypothesis that specific components of the respiratory chain in the brain were differentially sensitive to mitochondrial oxidative stress, and whether such sensitivity would lead to neuronal cell death. We carried out proteomic differential display and examined the activities of respiratory chain complexes I, II, III, IV, V, and the tricarboxylic acid cycle enzymes alpha-ketoglutarate dehydrogenase and citrate synthase in SOD2 null mice in conjunction with efficacious antioxidant treatment and observed differential sensitivities of mitochondrial proteins to oxidative stress. In addition, we observed a striking pattern of neuronal cell death as a result of mitochondrial oxidative stress, and were able to significantly reduce the loss of neurons via antioxidant treatment.  相似文献   

9.
《Cell》2022,185(4):712-728.e14
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

10.
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.  相似文献   

11.
Wang D  Hiesinger PR 《Autophagy》2012,8(4):711-713
Degradation of membrane compartments, organelles and other debris through macroautophagy (hereafter referred to as autophagy) is thought to occur in most, maybe all, cells. We recently reported the discovery of a neuron-specific endomembrane degradation mechanism that depends on the vesicle SNARE neuronal Synaptobrevin (n-Syb) and the vesicle ATPase component V100 (the V(0)a1 subunit). Loss of n-Syb causes degeneration of adult photoreceptor neurons in Drosophila, reminiscent of adult-onset degeneration in neurons with defective autophagy. Here we explore the potential importance of this newly discovered neuron-specific degradation mechanism in comparison with ubiquitous autophagy machinery for adult-onset neurodegeneration.  相似文献   

12.
《Autophagy》2013,9(4):711-713
Degradation of membrane compartments, organelles and other debris through macroautophagy (hereafter referred to as autophagy) is thought to occur in most, maybe all, cells. We recently reported the discovery of a neuron-specific endomembrane degradation mechanism that depends on the vesicle SNARE neuronal Synaptobrevin (n-Syb) and the vesicle ATPase component V100 (the V0a1 subunit). Loss of n-Syb causes degeneration of adult photoreceptor neurons in Drosophila, reminiscent of adult-onset degeneration in neurons with defective autophagy. Here we explore the potential importance of this newly discovered neuron-specific degradation mechanism in comparison with ubiquitous autophagy machinery for adult-onset neurodegeneration.  相似文献   

13.
Pantothenate kinase–associated neurodegeneration (PKAN) is an incurable rare genetic disorder of children and young adults caused by mutations in the PANK2 gene, which encodes an enzyme critical for the biosynthesis of coenzyme A. Although PKAN affects only a small number of patients, it shares several hallmarks of more common neurodegenerative diseases of older adults such as Alzheimer''s disease and Parkinson''s disease. Advances in etiological understanding and treatment of PKAN could therefore have implications for our understanding of more common diseases and may shed new lights on the physiological importance of coenzyme A, a cofactor critical for the operation of various cellular metabolic processes. The large body of knowledge that accumulated over the years around PKAN pathology, including but not limited to studies of various PKAN models and therapies, has contributed not only to progress in our understanding of the disease but also, importantly, to the crystallization of key questions that guide future investigations of the disease. In this review, we will summarize this knowledge and demonstrate how it forms the backdrop to new avenues of research.  相似文献   

14.
Colorectal carcinoma (CRC) is the third most malignant tumor in the world, but the key mechanisms of CRC progression have not been confirmed. UBR5 and PYK2 expression levels were detected by RT-qPCR. The levels of UBR5, PYK2, and mitochondrial oxidative phosphorylation (OXPHOS) complexes were detected by western blot analysis. Flow cytometry was used to detect ROS activity. The CCK-8 assay was used to assess cell proliferation and viability. The interaction between UBR5 and PYK2 was detected by immunoprecipitation. A clone formation assay was used to determine the cell clone formation rate. The ATP level and lactate production of each group of cells were detected by the kit. EdU staining was performed for cell proliferation.Transwell assay was performed for cell migration ability. For the CRC nude mouse model, we also observed and recorded the volume and mass of tumor-forming tumors. The expression of UBR5 and PYK2 was elevated in both CRC and human colonic mucosal epithelial cell lines, and knockdown of UBR5 had inhibitory effects on cancer cell proliferation and cloning and other behaviors in the CRC process by knockdown of UBR5 to downregulate the expression of PYK2, thus inhibiting the OXPHOS process in CRC; rotenone (OXPHOS inhibitor) treatment enhanced all these inhibitory effects. Knockdown of UBR5 can reduce the expression level of PYK2, thus downregulating the OXPHOS process in CRC cell lines and inhibiting the CRC metabolic reprogramming process.  相似文献   

15.
Mitochondrial OXPHOS defects are responsible for a large group of human diseases and have been associated with degenerative disorders and aging. The accurate in vivo and in organello biochemical assessment of the OXPHOS system is necessary for the diagnosis and investigation of such conditions. Here I describe a set of accurate polarographic and spectrophotometric assays that use relatively small amounts of biological material (cells or isolated mitochondria) and discuss the biochemical parameters appropriate for discriminating partial OXPHOS defects.  相似文献   

16.
Transglutaminases (TGs) are Ca2+-dependent enzymes that catalyze a variety of modifications of glutaminyl (Q) residues. In the brain, these modifications include the covalent attachment of a number of amine-bearing compounds, including lysyl (K) residues and polyamines, which serve to either regulate enzyme activity or attach the TG substrates to biological matrices. Aberrant TG activity is thought to contribute to Alzheimer disease, Parkinson disease, Huntington disease, and supranuclear palsy. Strategies designed to interfere with TG activity have some benefit in animal models of Huntington and Parkinson diseases. The following review summarizes the involvement of TGs in neurodegenerative diseases and discusses the possible use of selective inhibitors as therapeutic agents in these diseases.  相似文献   

17.
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance.  相似文献   

18.
Glutamate excitotoxicity causes neuronal dysfunction and degeneration. It is implicated in chronic disorders, including Alzheimer's disease, and in acute CNS insults such as ischemia. These disorders share prominent morphological features, including axon degeneration and cell body death. However, the molecular mechanism underlying excitotoxicity-induced neurodegeneration remains poorly understood. A key molecular feature of neurodegeneration is deficits in microtubule-based cargo transport that plays a pivotal role in maintaining the balance of survival and stress signaling in the axon. We developed an excitotoxicity-induced neurodegeneration system in primary neuronal cultures. We find that excitotoxicity generates a C-terminal truncated form of p150Glued, a major component of the dynactin complex, which exacerbates axon degeneration. This p150Glued truncated form was identified in brain tissues of patients with Alzheimer's disease. Overexpression of wild-type (WT) dynein intermediate chain (DIC), a dynein component that interacts with p150Glued and links dynein and dynactin complexes, DIC (S84D) mutant, and WT p150Glued suppressed axon degeneration. These modulating effects of p150Glued and DIC on excitotoxicity-induced axon degeneration are also observed in apoptosis and cell body death. Thus, our findings identify retrograde transport proteins, p150Glued and DIC, as novel modulators of neurodegeneration induced by glutamate excitotoxicity.  相似文献   

19.
20.
The concept of “prion-like” has been proposed to explain the pathogenic mechanism of the principal neurodegenerative disorders associated with protein misfolding, including Alzheimer disease (AD). Other evidence relates prion protein with AD: the cellular prion protein (PrPC) binds β amyloid oligomers, allegedly responsible for the neurodegeneration in AD, mediating their toxic effects. We and others have confirmed the high-affinity binding between β amyloid oligomers and PrPC, but we were not able to assess the functional consequences of this interaction using behavioral investigations and in vitro tests. This discrepancy rather than being resolved with the classic explanations, differencies in methodological aspects, has been reinforced by new data from different sources. Here we present data obtained with PrP antibody that not interfere with the neurotoxic activity of β amyloid oligomers. Since the potential role of the PrPC in the neuronal dysfunction induced by β amyloid oligomers is an important issue, find reasonable explanation of the inconsistent results is needed. Even more important however is the relevance of this interaction in the context of the disease, so as to develop valid therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号