首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CLIP‐170 is implicated in the formation of kinetochore–microtubule attachments through direct interaction with the dynein/dynactin complex. However, whether this important function of CLIP‐170 is regulated by phosphorylation is unknown. Herein, we have identified polo‐like kinase 1 (Plk1) and casein kinase 2 (CK2) as two kinases of CLIP‐170 and mapped S195 and S1318 as their respective phosphorylation sites. We showed that a CK2 unphosphorylatable mutant lost its ability to bind to dynactin and to localize to kinetochores during prometaphase, indicating that the CK2 phosphorylation of CLIP‐170 is involved in its dynactin‐mediated kinetochore localization. Furthermore, we provide evidence that Plk1 phosphorylation of CLIP‐170 at S195 enhances its association with CK2. Finally, we detected defects in the formation of kinetochore fibres in cells expressing the CLIP‐S195A and ‐S1318A, but not the CLIP‐S195E and ‐S1318D, confirming that Plk1‐ and CK2‐associated phosphorylations of CLIP‐170 are involved in the timely formation of kinetochore–microtubule attachments in mitosis.  相似文献   

2.
Kinetochore dynein has been implicated in microtubule capture, correcting inappropriate microtubule attachments, chromosome movement, and checkpoint silencing. It remains unclear how dynein coordinates this diverse set of functions. Phosphorylation is responsible for some dynein heterogeneity (Whyte, J., Bader, J. R., Tauhata, S. B., Raycroft, M., Hornick, J., Pfister, K. K., Lane, W. S., Chan, G. K., Hinchcliffe, E. H., Vaughan, P. S., and Vaughan, K. T. (2008) J. Cell Biol. 183, 819-834), and phosphorylated and dephosphorylated forms of dynein coexist at prometaphase kinetochores. In this study, we measured the impact of inhibiting polo-like kinase 1 (Plk1) on both dynein populations. Phosphorylated dynein was ablated at kinetochores after inhibiting Plk1 with a small molecule inhibitor (5-Cyano-7-nitro-2-(benzothiazolo-N-oxide)-carboxamide) or chemical genetic approaches. The total complement of kinetochore dynein was also reduced but not eliminated, reflecting the presence of some dephosphorylated dynein after Plk1 inhibition. Although Plk1 inhibition had a profound effect on dynein, kinetochore populations of dynactin, spindly, and zw10 were not reduced. Plk1-independent dynein was reduced after p150(Glued) depletion, consistent with the binding of dephosphorylated dynein to dynactin. Plk1 phosphorylated dynein intermediate chains at Thr-89 in vitro and generated the phospho-Thr-89 phospho-epitope on recombinant dynein intermediate chains. Finally, inhibition of Plk1 induced defects in microtubule capture and persistent microtubule attachment, suggesting a role for phosphorylated dynein in these functions during prometaphase. These findings suggest that Plk1 is a dynein kinase required for recruitment of phosphorylated dynein to kinetochores.  相似文献   

3.
Dynactin is a multi-subunit complex which has been implicated in cytoplasmic dynein function, though its mechanism of action is unknown. In this study, we have characterized the 50-kD subunit of dynactin, and analyzed the effects of its overexpression on mitosis in living cells. Rat and human cDNA clones revealed p50 to be novel and highly conserved, containing three predicted coiled-coil domains. Immunofluorescence staining of dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase, and concentrate near spindle poles thereafter. Overexpression of p50 in COS-7 cells disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings represent clear evidence for dynactin and cytoplasmic dynein codistribution within cells, and for the presence of dynactin at kinetochores. The data also provide direct in vivo evidence for a role for vertebrate dynactin in modulating cytoplasmic dynein binding to an organelle, and implicate both dynactin and dynein in chromosome alignment and spindle organization.  相似文献   

4.
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1.  相似文献   

5.
Dynactin is an essential part of the cytoplasmic dynein motor that enhances motor processivity and serves as an adaptor that allows dynein to bind cargoes. Much is known about dynactin''s interaction with dynein and microtubules, but how it associates with its diverse complement of subcellular binding partners remains mysterious. It has been suggested that cargo specification involves a group of subunits referred to as the “pointed-end complex.” We used chemical cross-linking, RNA interference, and protein overexpression to characterize interactions within the pointed-end complex and explore how it contributes to dynactin''s interactions with endomembranes. The Arp11 subunit, which caps one end of dynactin''s Arp1 filament, and p62, which binds Arp11 and Arp1, are necessary for dynactin stability. These subunits also allow dynactin to bind the nuclear envelope prior to mitosis. p27 and p25, by contrast, are peripheral components that can be removed without any obvious impact on dynactin integrity. Dynactin lacking these subunits shows reduced membrane binding. Depletion of p27 and p25 results in impaired early and recycling endosome movement, but late endosome movement is unaffected, and mitotic spindles appear normal. We conclude that the pointed-end complex is a bipartite structural domain that stabilizes dynactin and supports its binding to different subcellular structures.  相似文献   

6.
Most of the long‐range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)‐based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein‐dynactin‐driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein‐dynactin motor complex and its vesicular cargoes.   相似文献   

7.
Dynactin, a multisubunit complex that binds to the microtubule motor cytoplasmic dynein, may provide a link between dynein and its cargo. Many subunits of dynactin have been characterized, elucidating the multifunctional nature of this complex. Using a dynein affinity column, p22, the smallest dynactin subunit, was isolated and microsequenced. The peptide sequences were used to clone a full-length human cDNA. Database searches with the predicted amino acid sequence of p22 indicate that this polypeptide is novel. We have characterized p22 as an integral component of dynactin by biochemical and immunocytochemical methods. Affinity chromatography experiments indicate that p22 binds directly to the p150Glued subunit of dynactin. Immunocytochemistry with antibodies to p22 demonstrates that this polypeptide localizes to punctate cytoplasmic structures and to the centrosome during interphase, and to kinetochores and to spindle poles throughout mitosis. Antibodies to p22, as well as to other dynactin subunits, also revealed a novel localization for dynactin to the cleavage furrow and to the midbodies of dividing cells; cytoplasmic dynein was also localized to these structures. We therefore propose that dynein/dynactin complexes may have a novel function during cytokinesis.  相似文献   

8.
9.
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.  相似文献   

10.
Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150Glued subunit from the cargo-binding Arp1 filament. We show here that the intrinsically disordered dynamitin N-terminus binds to Arp1 directly. When expressed in cells, dynamitin amino acids (AA) 1–87 causes complete release of endogenous dynamitin, p150, and p24 from dynactin, leaving behind Arp1 filaments carrying the remaining dynactin subunits (CapZ, p62, Arp11, p27, and p25). Tandem-affinity purification–tagged dynamitin AA 1–87 binds the Arp filament specifically, and binding studies with purified native Arp1 reveal that this fragment binds Arp1 directly. Neither CapZ nor the p27/p25 dimer contributes to interactions between dynamitin and the Arp filament. This work demonstrates for the first time that Arp1 can directly bind any protein besides another Arp and provides important new insight into the underpinnings of dynactin structure.  相似文献   

11.
Dynactin function in mitotic spindle positioning   总被引:1,自引:0,他引:1  
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150Glued, dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150Glued was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.  相似文献   

12.
Kinetochores bind microtubules laterally in a transient fashion and stably, by insertion of plus ends. These pathways may exist to carry out distinct tasks during different stages of mitosis and likely depend on distinct molecular mechanisms. On isolated chromosomes, we found microtubule nucleation/binding depended additively on both dynein/dynactin and on the Ndc80/Hec1 complex. Studying chromosome movement in living Xenopus cells within the simplified geometry of monopolar spindles, we quantified the relative contributions of dynein/dynactin and the Ndc80/Hec1 complex. Inhibition of dynein/dynactin alone had minor effects but did suppress transient, rapid, poleward movements. In contrast, inhibition of the Ndc80 complex blocked normal end-on attachments of microtubules to kinetochores resulting in persistent rapid poleward movements that required dynein/dynactin. In normal cells with bipolar spindles, dynein/dynactin activity on its own allowed attachment and rapid movement of chromosomes on prometaphase spindles but failed to support metaphase alignment and chromatid movement in anaphase. Thus, in prometaphase, dynein/dynactin likely mediates early transient, lateral interactions of kinetochores and microtubules. However, mature attachment via the Ndc80 complex is essential for metaphase alignment and anaphase A. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.  相似文献   

14.
Dynactin is a multisubunit complex that regulates the activities of cytoplasmic dynein, a microtubule-associated motor. Actin-related protein 1 (Arp1) is the most abundant subunit of dynactin, and it forms a short filament to which additional subunits associate. An Arp1 filament pointed-end--binding subcomplex has been identified that consists of p62, p25, p27, and Arp11 subunits. The functional roles of these subunits have not been determined. Recently, we reported the cloning of an apparent homologue of mammalian Arp11 from the filamentous fungus Neurospora crassa. Here, we report that N. crassa ro-2 and ro-12 genes encode the respective p62 and p25 subunits of the pointed-end complex. Characterization of Delta ro-2, Delta ro-7, and Delta ro-12 mutants reveals that each has a distinct phenotype. All three mutants have reduced in vivo vesicle trafficking and have defects in vacuole distribution. We showed previously that in vivo dynactin function is required for high-level dynein ATPase activity, and we find that all three mutants have low dynein ATPase activity. Surprisingly, Delta ro-12 differs from Delta ro-2 and Delta ro-7 and other previously characterized dynein/dynactin mutants in that it has normal nuclear distribution. Each of the mutants shows a distinct dynein/dynactin localization pattern. All three mutants also show stronger dynein/dynactin-membrane interaction relative to wild type, suggesting that the Arp1 pointed-end complex may regulate interaction of dynactin with membranous cargoes.  相似文献   

15.
Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.  相似文献   

16.
Motor proteins play a fundamental role in the congression and segregation of chromosomes in mitosis as well as the formation of the mitotic spindle. In particular, the dynein/dynactin complex is involved in the maintenance of the spindle, formation of astral microtubules, chromosome motion, and chromosome segregation. Dynactin is a multisubunit, high molecular weight protein that is responsible for the attachment of cargo to dynein. There are a number of major subunits in dynactin that are presumed to be important during mitosis. Arp1 is thought to be the attachment site for cargo to the complex while p150(Glued), a side arm of this complex regulates binding to MTs and the binding of dynactin to dynein. We performed colocalization studies of Arp1 and p150(Glued) to spindle microtubules. Both Arp1 and p150(Glued) colocalize with spindle MTs as well as cytoplasmic components. When treated with cytochalasin J, Arp1 concentrates at the centrosomes and is less co-localized with spindle MTs. Cytochalasin J has less of an effect on the colocalization of p150(Glued) with spindle MTs, suggesting that Arp1 may have a cytochalasin J sensitive site.  相似文献   

17.
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.  相似文献   

18.
Dynactin is a multimeric protein essential for the minus-end-directed transport driven by microtubule-based motor dynein. The pointed-end subcomplex in dynactin contains p62, p27, p25, and Arp11 subunits, and is thought to participate in interactions with membranous cargoes. We used sequence and structure prediction analysis to study dynactins p25 and p27. Here we present evidence that strongly supports that dynactins p27 and p25 contain the isoleucine-patch motif and adopt the left-handed parallel beta-helix fold. The structural models we obtained could contribute to the understanding of the complex interactions that dynactins are able to establish with cargo particles, microtubules or other dynactin subunits.  相似文献   

19.
Rough Deal (Rod) and Zw10 are components of a complex required for the metazoan metaphase checkpoint and for recruitment of dynein/dynactin to the kinetochore. The Rod complex, like most classical metaphase checkpoint components, forms part of the outer domain of unattached kinetochores. Here we analyze the dynamics of a GFP-Rod chimera in living syncytial Drosophila embryos. Uniquely among checkpoint proteins, GFP-Rod robustly streams from kinetochores along microtubules, from the time of chromosome attachment until anaphase onset. Prometaphase and metaphase kinetochores continuously recruit new Rod, thus feeding the current. Rod flux from kinetochores appears to require biorientation but not tension because it continues in the presence of taxol. As with Mad2, kinetochore- and spindle-associated Rod rapidly turns over with free cytosolic Rod, both during normal mitosis and after colchicine treatment, with a t1/2 of 25-45 s. GFP-Rod coimmunoprecipitates with dynein/dynactin, and in the absence of microtubules both Rod and dynactin accumulate on kinetochores. Nevertheless, Rod and dynein/dynactin behavior are distinguishable. We propose that the Rod complex is a major component of the fibrous corona and that the recruitment of Rod during metaphase is required to replenish kinetochore dynein after checkpoint conditions have been satisfied but before anaphase onset.  相似文献   

20.
The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores. A recent study suggested that Nordihydroguaiaretic acid (NDGA) stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White 10). We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal, Zwilch) complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10, hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10 kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号