首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We established a novel in vitro method, termed the root recovery assay, to evaluate the survival under osmotic stress of lettuce (Lactuca sativa L.) seedlings. Under salinity and drought stress, combination of the root-bending assay and root recovery assay showed the same trends in dry weight and survival rate as a hydroponic culture. Both in vitro assays and hydroponics ranked the three lettuce cultivars in the same order of drought tolerance. The root-bending assay evaluated the plant’s growth and the root recovery assay indicated the plant’s survival. In addition, the combined assay required less space and approximately half the time period compared with the hydroponic culture. These results suggested that application of the root-bending and root recovery assay should be a rapid and space-saving method with which to evaluate the osmotic stress tolerance of lettuce from both growth and survival standpoints. Hideki Maruyama and Ryohei Koyama contributed equally to this work.  相似文献   

2.
Experiments at Invergowrie, south-east Perthshire, showed that the extent of spread of potato leaf-roll and Y viruses varied from year to year and that virus Y consistently spread more than leaf roll. Most spread of Virus Y occurred before the end of June and of leaf-roll virus before the end of July. Both viruses spread slightly more in late- than in early-planted crops. When plants with leaf roll and already colonized by Myzus persicae were placed in a healthy crop of Majestic potatoes at intervals during the season, the amount of virus spread decreased rapidly with increasing age of the crop. Spread of leaf roll occurred in all of twenty-five 'seed' crops in different districts of eastern Scotland in 1955 but in only twenty out of thirty-six similar crops in 1956. Annual and regional differences in virus spread appear to reflect differences in the time at which migrant aphids reach potato crops in early summer and the rate at which infestation builds up in the crops.  相似文献   

3.
Globally, biotech crops have left a legacy of success and some notable failures due to regulatory and litigious barriers to entry, with a pipeline of potentially beneficial biotech agricultural products lined up and awaiting approval. Compared with traditional agriculture, these crops provide significant health benefits to environmental and human health benefits, including organic systems. While the rest of the world has increased acreage of biotech crops at a steady annual rate of 10%, North America-the birthplace of most biotech crops-has reached a critical turning point in its regulatory evolution. Biotech crops can play a major role in creating a more sustainable agricultural landscape, which is increasingly well-documented, but future commercial use may be hampered by regulation and litigation that place organic and non-GMO agriculture on a pedestal, which could force many biotech crops into containment. If producers of biotech crops are required to prevent their crops from contaminating these other, high premium specialty crops through migration, innovation in agricultural biotechnology will suffer (as the European experience with agricultural biotechnology clearly demonstrates).  相似文献   

4.
The yield and performance of seeds from crops of winter-hardy, bolting-resistant onion grown at temperatures of 15–16, 18–19 and 22–23°C in 1979, 1980 and 1982 were compared. Yields of seed from crops grown at 22–23°C were lower than those from crops grown at lower temperatures but the seeds ripened between 11 and 32 days earlier. Seeds from crops grown at mean temperatures of above 18°C gave higher percentage germination when imbibed at 30°C than 20°C and they also gave higher percentage seedling emergence than those from crops grown at lower temperatures. Seedlings from seeds produced at mean temperatures above 18°C were heavier than those from seeds of a similar weight but produced at lower temperatures. None of these differences were associated with differences in seed weight, embryo weight or seed dormancy but were positively correlated with differences in seed N-concentration. The differences were also associated with the rate of imbibition of water as high germination, high N-content seeds had a slower rate of imbibition than low germination, low N-content seeds of the same weight.  相似文献   

5.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

6.
An increasing number of crops are being considered as potential sources of biomass for both conventional (e.g., maize/corn) and cellulosic (e.g., switchgrass, miscanthus, and hybrid poplar) biofuels. Studies investigating the hydrologic characteristics of these crops are often conducted at either the field scale with a focus on evapotranspiration (ET) or at the plot scale where experiments generally rely on soil water storage dynamics and residual water balances. While this has led to many important insights into crop–soil water interactions under these crops, there does not appear to be any multiyear direct comparisons of the drainage fluxes under this range of biofuel crops. Furthermore, important advancements in drainage flux measurement technologies have yet to be applied to quantify hydrologic fluxes below a range of biofuel crops. Here, we use soil water content (SWC) probes and automated equilibrium tension lysimeters (AETL) to characterize detailed differences in soil water storage and drainage fluxes under conventional and cellulosic biofuel crops. The results of this study suggest that there are significant differences between subsurface water fluxes under some conventional and cellulosic biofuel crops, such as 75% greater average annual drainage and more rapid drainage accumulation under switchgrass relative to maize.  相似文献   

7.
Belzile FJ 《Biochimie》2002,84(11):1111-1118
Since the mid 1990s, genetically modified (GM) crops have been grown commercially in Canada on a scale that has increased steadily over the years. An intense debate ensued, as elsewhere, and many fears were expressed regarding not only the technology itself but some of the main GM crops being grown. It would seem appropriate at this time to examine how these novel crops compare to crops bred by more traditional means and what impacts these GM crops have had based on experience and not merely on conjecture. To begin, we will put things in a historical perspective and recall how domestication and conventional plant breeding have shaped the crops of today. Then, we will describe briefly the distinctive features of GM plants (obtained so far mainly by nuclear transgenesis) and how these novel crops are regulated in Canada. We will then give two examples of widely grown GM crops in Canada (insect-resistant corn and herbicide-tolerant canola) and examine the main questions that were raised as well as the actual impacts these crops have had on the farm. These examples will help us outline some of the limitations of the current generation of GM plants and, finally, we will try to get a glimpse of the future by examining some recent technical developments in the field of recombinant DNA technologies applied to plant breeding.  相似文献   

8.
Summary Seedling emergence in different crops was studied in the soil temperature range of 5°C to 45°C. In peas and turnips seedling emergence stopped at a soil temperature of 35°C and in other crops at 45°C. The minimum temperature for seedling emergence was above 10°C in case of cotton, sorghum, rice, maize and musk melon and above 15°C in case of squash, bottle gourd and okra. Winter crops like wheat, gram, peas, and turnips emerged at 5°C but the percent emergence was low. The optimum range for seedling emergence was narrower for vegetable crops as compared with cereals.  相似文献   

9.
Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination‐dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.  相似文献   

10.
Capsule Game cover crops in a pastoral region of southwest Scotland supported passerines at more than twice the density found in similar crops in an arable region.

Aims To investigate the use of seed-rich habitats (game cover crops) by farmland passerines in the agricultural grasslands of southwest Scotland relative to the arable east.

Methods Birds were counted in game cover crops and conventional crops on nine farms in Dumfries and Galloway, and Ayrshire, during the winters of 2003/04 and 2004/05. Similar data from eastern Scotland were re-analysed to compare the relative use of the two crop types in the contrasting regions.

Results Passerine densities in game cover crops in southwest Scotland were two orders of magnitude greater than in conventional crops. Furthermore, densities within grassland game cover crops were more than double those in arable areas and densities in grassland conventional crops were just 14% of those in equivalent arable habitats.

Conclusion The significantly greater difference between passerine densities in game cover crops and conventional crops in a grassland versus an arable region of Scotland could not be explained by differences in the bird communities, crop types, boundary habitats, weather, observer effects or survey methods used. We suggest that game cover crops may be more attractive in grassland regions because alternative food sources are rarer than in arable regions.  相似文献   

11.
Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.  相似文献   

12.
Suggestions that novel, non‐food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape‐scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait‐based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.  相似文献   

13.
冬季作物种植对双季稻根系酶活性及形态指标的影响   总被引:5,自引:0,他引:5  
基于湖南长沙7a定位试验,以冬闲为对照,研究了冬种马铃薯、紫云英及油菜为前茬作物对早、晚稻根系酶活性、形态指标及产量的影响.结果表明,与冬闲相比,冬种作物后早、晚稻根系丙二醛(MDA)含量增加,但其根系的活性氧清除能力更强(SOD、POD和CAT活性高),能够在一定程度上缓解膜脂过氧化作用带来的伤害;冬种不同作物对早晚稻根系形态的影响表现不一.冬种马铃薯和紫云英处理在早稻生育后期的根系优势明显,并能在一定程度上促进晚稻根系生长,双季稻总产量较对照分别增加6.29%和7.76%,而冬种油菜抑制了晚稻根系生长,导致晚稻产量及双季稻总产分别降低6.31%和1.96%;相关性分析表明,灌浆期较高的根长、根数、根体积和根表面积是冬种作物改善双季稻产量的主要原因.综合来看,冬种马铃薯和紫云英对于促进双季稻根系生长,提高稻谷产量具有重要作用,而冬种油菜则不利于提高双季稻的稻谷生产力.  相似文献   

14.
覆盖作物指的是在农业生产间隙种植,使土壤在时间或空间上减少或避免裸露的一种作物。其能使农田土壤免受风蚀、水蚀和人为扰动的影响,被认为是一种新型的保护性耕作方式。本文简要介绍了农田覆盖作物的种植管理情况,包括种植品种、耕作模式和绿肥作物的灭生还田方式等,可为推广覆盖作物在农田休闲期的高效大面积种植提供参考。基于国内外研究综述了绿肥种植对经济作物、土壤质量、杂草抑制、温室气体排放和土壤微生物等的影响及研究进展,阐明了覆盖作物对农田生态系统的诸多益处。尽管覆盖作物存在局限性,例如短期收益不明显、管理措施不当会造成作物减产等,但其在改善土壤质量、实现农业可持续发展方面仍然具有重要的应用价值。  相似文献   

15.
The effects of light and discharge on standing crops of periphyton in adjacent shaded and open reaches of first to fourth order streams were examined during winter in three streams of the Western Cascades, Oregon. Standing crops were measured in terms of chlorophylla and periphyton biomass at each site on 8 occasions. Open sites supported higher standing crops of periphyton than shaded sites and increases in standing crop were shown to be related to light input at each site. Biomass increased throughout winter until scouring associated with an unusually late winter freshet reduced periphyton standing crops to their lowest observed levels. It is concluded that periphyton levels are affected by a combination of factors of which light levels, and the periodicity of storm events are of major importance.  相似文献   

16.
Increases in total dry-matter yield during bulb growth in well-irrigatedonion crops were correlated with the total solar radiation interceptedby the leaf canopy. The mean efficiency of conversion of interceptedradiation to dry-matter was 1.58 g MJ–1. However, efficiencieswere significantly different between seasons and in two yearsout of three they were lower for spring-sown crops than forautumn-sown crops. The lower efficiencies coincided with periodsof high mean temperature and irradiance. The percentage of thetotal irradiance intercepted by the canopy during bulbing (1%)was increased by higher plant densities, earlier sowing andin later-maturing cultivars. It was higher in spring-sown thanin autumn-sown crops especially at low plant densities. Theduration of bulb growth was negatively correlated with 1% andwith the mean air temperature during bulb growth. Consequentlyautumn-sown crops had a longer duration of bulb growth thanspring-sown crops and produced exceptionally high bulb yieldsat high plant densities. Non-irrigated crops had a lower 1%and a shorter duration of bulb growth than irrigated crops,and a lower conversion efficiency in a season of high mean temperatureand irradiance. Onion, Allium cepa L., bulb, irradiance, efficiency, partitioning, plant population, temperature, irrigation, growth-analysis, water-stress, leaf-area-index  相似文献   

17.
Samples collected in 1994 and 1995 from commercial crops of chickpeas and lentils growing in the agricultural region of south-west Western Australia were tested for infection with alfalfa mosaic (AMV) and cucumber mosaic (CMV) viruses, and for members of the family Potyviridae using enzyme-linked immunosorbent assay (ELISA). In 1994 no virus was detected in the 21 chickpea crops tested but in 1995, out of 42 crops, AMV was found in two and CMV in seven. With lentils, AMV and/or CMV was found in three out of 14 crops in 1994 and 4 out of 13 in 1995, both viruses being detected in two crops in each year. Similar tests on samples from chickpea and lentil crops and plots growing at experimental sites, revealed more frequent infection with both viruses. No potyvirus infection was found in chickpeas or lentils in agricultural areas either in commercial crops or at experimental sites. However, bean yellow mosaic virus (BYMV) was detected along with AMV and CMV in irrigated plots of chickpeas and lentils at a site in Perth. When samples of seed from infected crops or plots of chickpeas and lentils were germinated and leaves or roots of seedlings tested for virus infection by ELISA, AMV and CMV were found to be seed-borne in both while BYMV was seed-borne in lentils. The rates of transmission found through seed of chickpea to seedlings were 0.1–1% with AMV and 0.1–2% with CMV. Seed transmission rates with lentil were 0.1–5% for AMV, 0.1–1% for CMV and 0.8% for BYMV. Individual seed samples of lentil and chickpea sometimes contained both AMV and CMV. With both species, infection with AMV and CMV was sometimes found in commercial seed stocks or seed stocks from multiplication crops of advanced selections nearing release as new cultivars. Seed-borne virus infection has important practical implications, as virus sources can be re-introduced every year to chickpea and lentil crops or plots through sowing infected seed stocks leading to spread of infection by aphid vectors, losses in grain yield and further contamination of seed stocks.  相似文献   

18.
Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley) or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops.  相似文献   

19.
Barney JN  DiTomaso JM 《PloS one》2011,6(3):e17222
The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate niche, which is valuable for agronomists, crop developers, and regulators seeking to choose agro-ecoregionally appropriate crops while minimizing the risk of invasive species.  相似文献   

20.
The biology, phenology, and harmfulness of the weevil Tychius quinquepunctatus L. in pea crops were studied for many years in the southeast of the Central Chernozem Region. The species showed a highly uneven distribution in Kamennaya Steppe, with preference for the early and short-stemmed pea varieties. A high pest density focus was found with heavy damage to the pea plants in the marginal field zone where 20–30% of the seeds were damaged; the yield loss may be as high as 6%. In later pea crops, T. quinquepunctatus appears at earlier phases of the plant development, oviposition and larval development proceed at higher rates, the damage to the crops increases, and the necessity of control measures against the weevil grows. Effective protection from T. quinquepunctatus in the crops with optimum sowing time may be achieved with a many-target insecticidal treatment at the budding phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号