首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrins are heterodimeric transmembrane cell adhesion receptors that are essential for a wide range of biological functions via cell–matrix and cell–cell interactions. Recent studies have provided evidence that some of the subunits in the integrin family are involved in synaptic and behavioral plasticity. To further understand the role of integrins in the mammalian central nervous system, we generated a postnatal forebrain and excitatory neuron‐specific knockout of α8‐integrin in the mouse. Behavioral studies showed that the mutant mice are normal in multiple hippocampal‐dependent learning tasks, including a T‐maze, non‐match‐to‐place working memory task for which other integrin subunits like α3‐ and β1‐integrin are required. In contrast, mice mutant for α8‐integrin exhibited a specific impairment of long‐term potentiation (LTP) at Schaffer collateral–CA1 synapses, whereas basal synaptic transmission, paired‐pulse facilitation and long‐term depression (LTD) remained unaffected. Because LTP is also impaired in the absence of α3‐integrin, our results indicate that multiple integrin molecules are required for the normal expression of LTP, and different integrins display distinct roles in behavioral and neurophysiological processes like synaptic plasticity.  相似文献   

2.
In this issue, Matteoli and colleagues show that SNAP-25 levels regulate the efficacy of presynaptic glutamate release and thereby alter short-term plasticity, with potential relevance for psychiatric diseases.EMBO reports(2013) 14 7, 645–651 doi:10.1038/embor.2013.75Control of exocytotic neurotransmitter release is essential for communication in the nervous system and for preventing synaptic abnormalities. The function of synaptosomal-associated protein of 25 kDa (SNAP-25) as a crucial component of the core machinery required for synaptic vesicle fusion is well established, but evidence is growing to suggest an additional modulatory role in neurotransmission. In this issue of EMBO reports, Antonucci et al show that the efficacy of evoked glutamate release is modulated by the expression levels of SNAP-25—a function that might relate to the ability of SNAP-25 to modulate voltage-gated calcium channels and presynaptic calcium ion concentration [1]. Altered synaptic transmission and short-term plasticity due to changes in SNAP-25 expression might have direct consequences for brain function and for the development of neuropsychiatric disorders.Communication between neurons is essential for brain function and occurs through chemical neurotransmission at specialized cell–cell contacts termed ‘synapses''. Within the nerve terminal of the presynaptic neuron electrical stimuli cause the opening of voltage-gated calcium channels (VGCCs), which results in the influx of calcium ions. This triggers the exocytic release of neurotransmitter by fusion of synaptic vesicles with the presynaptic membrane. Released neurotransmitter molecules are detected by specific receptors expressed by the postsynaptic neuron.Calcium-induced synaptic vesicle fusion requires complex assembly between the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) synaptobrevin 2, located on the synaptic vesicle, and the abundant plasma membrane SNAREs SNAP-25 and syntaxin 1, on the opposing presynaptic plasma membrane. SNARE complex assembly is tightly regulated by Sec1/Munc18-like proteins [2]. Further regulatory factors such as the synaptic vesicle calcium-sensing protein synaptotagmin 1 couple the SNARE machinery to presynaptic calcium influx. SNARE-mediated neurotransmitter release occurs preferentially at the active zone—a presynaptic membrane domain specialized for exocytosis within which VGCCs are positioned close to docked synaptic vesicles through a proteinaceous cytomatrix and associated cell adhesion molecules [3,4].Altered short-term plasticity due to changes in SNAP-25 expression might have direct consequences for brain function and for the development of neuropsychiatric disordersAn unresolved conundrum in synaptic transmission remains—the observation that SNARE proteins, such as SNAP-25, are among the most highly expressed, in copy number, presynaptic proteins, whilst only a handful of SNARE complexes are needed to drive the fusion of a single synaptic vesicle [5]. Why, then, are SNAREs such as SNAP-25 so abundant? One possible explanation might be that SNARE proteins, in addition to forming trans-SNARE complexes, assemble with other proteins, and such partitioning might regulate neurotransmission. For example, SNAP-25 has been shown to negatively regulate VGCCs in glutamatergic but not in GABAergic neurons [6]. A secondary regulatory function of SNAP-25 is also supported by its genetic association with synaptic abnormalities such as schizophrenia and attention deficit hyperactivity disorder (ADHD) in humans [7]. SNAP-25 expression is reduced twofold in the hippocampus and frontal lobe from schizophrenic patients [8] and in animal models for ADHD [9]. Thus, SNAP-25 expression levels might crucially regulate normal synaptic function.A new study in this issue of EMBO reports by Antonucci and colleagues investigates the consequences of reduced SNAP-25 expression on synaptic function in SNAP-25+/− heterozygous (Het) mutant mice. By using patch clamp electrophysiology, Antonucci et al revealed a selective enhancement of glutamatergic but not GABAergic neurotransmission as a result of reduced SNAP-25 expression. Several other parameters including the amplitude and frequency of miniature excitatory and inhibitory currents were unaffected. These data indicate that reduced levels of SNAP-25, an essential component of the fusion machinery, selectively enhance evoked release of glutamate whilst synaptic connectivity and postsynaptic glutamate receptor sensitivity remain unaltered. Further electrophysiological experiments in hippocampal neurons in culture showed that elevated glutamatergic transmission was probably due to increased release probability rather than changes in the number of fusion-prone, so-called ‘readily releasable synaptic vesicles''. This effect was occluded by pharmacologically induced calcium entry bypassing VGCCs, suggesting that altered calcium influx might underlie the differences in evoked glutamate release between wild-type and SNAP-25 Het neurons. As schizophrenia and ADHD are associated with changes in short-term plasticity, a paradigm reflecting presynaptic function, Antonucci et al analysed neurotransmission by paired-pulse stimulation—a protocol whereby two closely paired stimuli are applied within a 50 ms time interval. Wild-type neurons showed significant short-term facilitation, that is, a stronger response to the second stimulus as a result of increased calcium levels in the presynaptic compartment. By contrast, Het neurons had a reduced response to the second stimulus. Such paired-pulse depression is commonly viewed as a sign of increased release probability, which occurs when the first stimulus induces a partial depletion of release-ready synaptic vesicles during paired stimulation. As a consequence, the second stimulus evokes a comparably reduced response [3]. The switch from paired-pulse facilitation to depression was not fully reproduced in hippocampal slices from wild-type and Het mice, although facilitation seemed to be attenuated in SNAP-25 Het slices. One possible explanation for the apparent discrepancy between cultured neurons taken from newborn animals and acute slices from adult mice is the constant postnatal increase in SNAP-25 expression in SNAP-25 Het mice [10], which might partly counteract the defects caused by heterozygosity. Consistent with this explanation are data from rescue experiments by Antonucci et al, which showed that altered neurotransmission and defects in short-term plasticity in Het neurons can be gradually recovered in parallel with increased SNAP-25 expression. Moreover, cultured neurons show substantially higher levels of endogenous activity compared with acute slice preparations, leading to possible changes in the partitioning of SNAP-25 between SNARE complexes and association with VGCCs. Further experiments are clearly required to resolve these issues. Irrespective of these potential caveats, the combined data support the hypothesis that alterations in SNAP-25 expression underlie regulatory changes in neurotransmission, resulting in altered short-term plasticity and possibly disease.Many open questions remain. In particular, the precise mechanisms underlying elevated glutamatergic transmission and presynaptic plasticity under conditions of reduced SNAP-25 expression remain elusive. It has been shown before that free SNAP-25 inhibits Cav2.1-type VGCCs [6], an effect reversed by overexpression of synaptotagmin 1, which might associate with SNAP-25. Conversely, SNAP-25 occludes negative regulation of Cav2.2 VGCCs by free syntaxin 1 [3]. Hence, it is tempting to speculate that differential partitioning of SNAP-25 between free, SNARE-, synaptotagmin 1- and VGCC-complexed forms could regulate evoked neurotransmission (Fig 1). In this scenario, reduced SNAP-25 expression in Het animals and in schizophrenic and ADHD patients would be sufficient to sustain SNARE-mediated synaptic vesicle fusion but partially releases VGCCS from SNAP-25-mediated inhibition. This would result in elevated calcium influx and facilitated neurotransmission. Additional levels of regulation could be imposed by developmental switching between alternatively spliced ‘a'' and ‘b'' isoforms of SNAP-25 [11], age-dependent alterations in presynaptic protein turnover and post-translational modifications.Open in a separate windowFigure 1Effect of presynaptic SNAP-25 levels on calcium-induced glutamate release. Top: in wild-type (WT) neurons, SNARE-mediated calcium-triggered synaptic vesicle fusion is negatively regulated by complex formation between SNAP-25 and VGCCs. Bottom: reduced SNAP-25 expression in heterozygotes (Het;+/−) partly releases VGCCs from SNAP-25-mediated clamping, resulting in elevated calcium influx through VGCCs and increased glutamate release through SNARE-mediated calcium-triggered synaptic vesicle fusion. Note that many key exocytotic proteins have been omitted for clarity. SNAP-25, synaptosomal-associated protein of 25 kDa; SNARE, soluble NSF attachment protein receptor; VGCC. voltage-gated calcium channel.Future studies need to address these possibilities, and their relationship to cognitive impairments and synaptic diseases, such as schizophrenia and ADHD.  相似文献   

3.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders in children with a worldwide prevalence of 5.3%. Recently, a Korean group assessed the G‐protein‐coupled receptor kinase‐interacting protein 1 (GIT1) gene that had previously been associated with ADHD. In their work, 27 single nucleotide polymorphisms SNPs in the GIT1 gene were tested; however, only the rs550818 SNP was associated with ADHD susceptibility. Moreover, the presence of the risk‐associated allele determined reduced GIT1 expression, and Git1‐deficient mice exhibit ADHD‐like phenotypes. The aim of this study was to determine if this association also occurs in a sample of Brazilian children with ADHD. No effect of GIT1 genotypes on ADHD susceptibility was observed in the case–control analysis. The odds ratios (ORs) were 0.75 (P = 0.184) for the CT genotype and 1.09 (P = 0.862) for the TT genotype. In addition, the adjusted OR of the CT+TT genotypes vs. the CC genotype was also estimated (P = 0.245). There were no dimensional associations between the GIT1 genotypes and both hyperactivity and /impulsivity, and only hyperactivity Swanson, Nolan and Pelham Scale‐Version IV (SNAP‐IV) scores (P = 0.609 and P = 0.247, respectively). The transmission/disequilibrium test indicated that there was no over‐transmission of rs550818 alleles from parents to ADHD children (z = 0.305; P = 0.761). We conclude that rs550818 is not associated with ADHD in this Brazilian sample. More studies are required before concluding that this polymorphism plays a role in ADHD susceptibility.  相似文献   

4.
Obesity is a potential risk factor for cognitive deficits in the elder humans. Using a high‐fat diet (HFD)–induced obese mouse model, we investigated the impacts of HFD on obesity, metabolic and stress hormones, learning performance, and hippocampal synaptic plasticity. Both male and female C57BL/6J mice fed with HFD (3 weeks to 9–12 months) gained significantly more weights than the sex‐specific control groups. Compared with the obese female mice, the obese males had similar energy intake but developed more weight gains. The obese male mice developed hyperglycemia, hyperinsulinemia, hypercholesterolemia, and hyperleptinemia, but not hypertriglyceridemia. The obese females had less hyperinsulinemia and hypercholesterolemia than the obese males, and no hyperglycemia and hypertriglyceridemia. In the contextual fear conditioning and step‐down passive avoidance tasks, the obese male, but not female, mice showed poorer learning performance than their normal counterparts. These learning deficits were not due to sensorimotor impairment as verified by the open‐field and hot‐plate tests. Although, basal synaptic transmission characteristics (input–output transfer and paired‐pulse facilitation (PPF) ratio) were not significantly different between normal and HFD groups, the magnitudes of synaptic plasticity (long‐term potentiation (LTP) and long‐term depression (LTD)) were lower at the Schaffer collateral‐CA1 synapses of the hippocampal slices isolated from the obese male, but not female, mice, as compared with their sex‐specific controls. Our results suggest that male mice are more vulnerable than the females to the impacts of HFD on weight gains, metabolic alterations and deficits of learning, and hippocampal synaptic plasticity.  相似文献   

5.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

6.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


7.
8.
Attention deficit hyperactivity disorder (ADHD) is one of the most highly heritable behavioral disorders in childhood, with heritability estimates between 60 and 90 %. Family, twin and adoption studies have indicated a strong genetic component in the susceptibility to ADHD. The synaptosomal-associated protein of molecular weight 25 kDa (SNAP25) is a plasma membrane protein known to be involved in synaptic and neural plasticity. Animal model studies have shown that SNAP25 gene is responsible for hyperkinetic behavior in the coloboma mouse. In recent studies, several authors reported an association between SNAP25 and ADHD. In this study, we used a case–control approach to analyze the possible association of two polymorphisms of SNAP25 for possible association with ADHD in a sample of 73 cases and 152 controls in a Colombian children population. Polymorphisms are located in 3′ untranslated region of SNAP25, positions T1065G and T1069C. We found a significant association with the GT haplotype (rs3746554|rs1051312) of SNAP25 (p = 0.001). Evidence of association was also found for the G/G genotype of rs3746554 (p = 0.002) and C/C genotype of rs1051312 (p = 0.009). This is the first study in a Latin American population. Similar to other studies, we found evidence of the association of SNAP25 and ADHD.  相似文献   

9.
Microglia‐mediated neuroinflammation plays a dual role in various brain diseases due to distinct microglial phenotypes, including deleterious M1 and neuroprotective M2. There is growing evidence that the peroxisome proliferator‐activated receptor γ (PPARγ) agonist rosiglitazone prevents lipopolysaccharide (LPS)‐induced microglial activation. Here, we observed that antagonizing PPARγ promoted LPS‐stimulated changes in polarization from the M1 to the M2 phenotype in primary microglia. PPARγ antagonist T0070907 increased the expression of M2 markers, including CD206, IL‐4, IGF‐1, TGF‐β1, TGF‐β2, TGF‐β3, G‐CSF, and GM‐CSF, and reduced the expression of M1 markers, such as CD86, Cox‐2, iNOS, IL‐1β, IL‐6, TNF‐α, IFN‐γ, and CCL2, thereby inhibiting NFκB–IKKβ activation. Moreover, antagonizing PPARγ promoted microglial autophagy, as indicated by the downregulation of P62 and the upregulation of Beclin1, Atg5, and LC3‐II/LC3‐I, thereby enhancing the formation of autophagosomes and their degradation by lysosomes in microglia. Furthermore, we found that an increase in LKB1–STRAD–MO25 complex formation enhances autophagy. The LKB1 inhibitor radicicol or knocking down LKB1 prevented autophagy improvement and the M1‐to‐M2 phenotype shift by T0070907. Simultaneously, we found that knocking down PPARγ in BV2 microglial cells also activated LKB1–AMPK signaling and inhibited NFκB–IKKβ activation, which are similar to the effects of antagonizing PPARγ. Taken together, our findings demonstrate that antagonizing PPARγ promotes the M1‐to‐M2 phenotypic shift in LPS‐induced microglia, which might be due to improved autophagy via the activation of the LKB1–AMPK signaling pathway.  相似文献   

10.
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKζ is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD‐95. Overexpression of DGKζ in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD‐95 binding. Conversely, DGKζ knockdown reduces spine density. Mice deficient in DGKζ expression show reduced spine density and excitatory synaptic transmission. Time‐lapse imaging indicates that DGKζ is required for spine maintenance but not formation. We propose that PSD‐95 targets DGKζ to synaptic DAG‐producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.  相似文献   

11.
Disabled‐1 (Dab1) is best known as an adaptor protein regulating neuron migration and lamination during development. However, the exact function of Dab1 in breast cancer is unknown. In this study, we examined the expression of Dab1 in 38 breast cancer paraffin sections, as well as 60 paired frozen breast cancer and their adjacent tissues. Our results showed that Dab1 was reduced in breast cancer, and its compromised expression correlated with triple negative breast cancer phenotype, poor differentiation, as well as lymph node metastasis. Functional analysis in breast cancer cell lines demonstrated that Dab1 promoted cell apoptosis, which, at least partially, depended on its regulation of NF‐κB/Bcl‐2/caspase‐9 pathway. Our study strongly suggests that Dab1 may be a potential tumour suppressor gene in breast cancer.  相似文献   

12.
Munc13‐1 is crucial for neurotransmitter release and, together with Munc18‐1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin‐1, SNAP‐25, and synaptobrevin. Assembly starts with syntaxin‐1 folded into a self‐inhibited closed conformation that binds to Munc18‐1. Munc13‐1 is believed to catalyze the opening of syntaxin‐1 to facilitate SNARE complex formation. However, different types of Munc13‐1‐syntaxin‐1 interactions have been reported to underlie this activity, and the critical nature of Munc13‐1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13‐1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin‐1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13‐1 fragments, even though binding of this linker region to Munc13‐1 is barely detectable. Conversely, the syntaxin‐1 SNARE motif clearly binds to Munc13‐1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13‐1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13‐1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin‐1 via interactions with the linker.  相似文献   

13.
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta‐analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite‐induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro‐habitat and the anti‐predation behaviour of infected hosts, and by promoting energy‐saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host–parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.  相似文献   

14.
N‐cadherin‐mediated adhesion is essential for maintaining the tissue architecture and stem cell niche in the developing neocortex. N‐cadherin expression level is precisely and dynamically controlled throughout development; however, the underlying regulatory mechanisms remain largely unknown. MicroRNAs (miRNAs) play an important role in the regulation of protein expression and subcellular localisation. In this study, we show that three miRNAs belonging to the miR379–410 cluster regulate N‐cadherin expression levels in neural stem cells and migrating neurons. The overexpression of these three miRNAs in radial glial cells repressed N‐cadherin expression and increased neural stem cell differentiation and neuronal migration. This phenotype was rescued when N‐cadherin was expressed from a miRNA‐insensitive construct. Transient abrogation of the miRNAs reduced stem cell differentiation and increased cell proliferation. The overexpression of these miRNAs specifically in newborn neurons delayed migration into the cortical plate, whereas the knockdown increased migration. Collectively, our results indicate a novel role for miRNAs of the miR379–410 cluster in the fine‐tuning of N‐cadherin expression level and in the regulation of neurogenesis and neuronal migration in the developing neocortex.  相似文献   

15.
Parkinson's disease (PD) is characterized as a movement disorder due to lesions in the basal ganglia. As the major input region of the basal ganglia, striatum plays a vital role in coordinating movements. It receives afferents from the cerebral cortex and projects afferents to the internal segment of the globus pallidus and substantia nigra pars reticulate. Additionally, accumulating evidences support a role for synaptic dysfunction in PD. Therefore, the present study explores the changes in protein abundance involved in synaptic disorders in unilateral lesioned 6‐OHDA rat model. Based on 18O/16O‐labeling technique, striatal proteins were separated using online 2D‐LC, and identified by nano‐ESI‐quadrupole‐TOF. A total of 370 proteins were identified, including 76 significantly differentially expressed proteins. Twenty‐two downregulated proteins were found in composition of vesicle, ten of which were involved in neuronal transmission and recycling across synapses. These include N‐ethylmaleimide‐sensitive fusion protein attachment receptor proteins (SNAP‐25, syntaxin‐1A, syntaxin‐1B, VAMP2), synapsin‐1, septin‐5, clathrin heavy chain 1, AP‐2 complex subunit beta, dynamin‐1, and endophilin‐A1. Moreover, MS result for syntaxin‐1A was confirmed by Western blot analysis. Overall, these synaptic changes induced by neurotoxin may serve as a reference for understanding the functional mechanism of striatum in PD.  相似文献   

16.
In Drosophila, the secreted signaling molecule Jelly Belly (Jeb) activates anaplastic lymphoma kinase (Alk), a receptor tyrosine kinase, in multiple developmental and adult contexts. We have shown previously that Jeb and Alk are highly enriched at Drosophila synapses within the CNS neuropil and neuromuscular junction (NMJ) and postulated a conserved intercellular signaling function. At the embryonic and larval NMJ, Jeb is localized in the motor neuron presynaptic terminal whereas Alk is concentrated in the muscle postsynaptic domain surrounding boutons, consistent with anterograde trans‐synaptic signaling. Here, we show that neurotransmission is regulated by Jeb secretion by functional inhibition of Jeb–Alk signaling. Jeb is a novel negative regulator of neuromuscular transmission. Reduction or inhibition of Alk function results in enhanced synaptic transmission. Activation of Alk conversely inhibits synaptic transmission. Restoration of wild‐type postsynaptic Alk expression in Alk partial loss‐of‐function mutants rescues NMJ transmission phenotypes and confirms that postsynaptic Alk regulates NMJ transmission. The effects of impaired Alk signaling on neurotransmission are observed in the absence of associated changes in NMJ structure. Complete removal of Jeb in motor neurons, however, disrupts both presynaptic bouton architecture and postsynaptic differentiation. Nonphysiologic activation of Alk signaling also negatively regulates NMJ growth. Activation of Jeb–Alk signaling triggers the Ras‐MAP kinase cascade in both pre‐ and postsynaptic compartments. These novel roles for Jeb–Alk signaling in the modulation of synaptic function and structure have potential implications for recently reported Alk functions in human addiction, retention of spatial memory, cognitive dysfunction in neurofibromatosis, and pathogenesis of amyotrophic lateral sclerosis. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

17.
The membrane transporter AT‐1/SLC33A1 translocates cytosolic acetyl‐CoA into the lumen of the endoplasmic reticulum (ER), participating in quality control mechanisms within the secretory pathway. Mutations and duplication events in AT‐1/SLC33A1 are highly pleiotropic and have been linked to diseases such as spastic paraplegia, developmental delay, autism spectrum disorder, intellectual disability, propensity to seizures, and dysmorphism. Despite these known associations, the biology of this key transporter is only beginning to be uncovered. Here, we show that systemic overexpression of AT‐1 in the mouse leads to a segmental form of progeria with dysmorphism and metabolic alterations. The phenotype includes delayed growth, short lifespan, alopecia, skin lesions, rectal prolapse, osteoporosis, cardiomegaly, muscle atrophy, reduced fertility, and anemia. In terms of homeostasis, the AT‐1 overexpressing mouse displays hypocholesterolemia, altered glycemia, and increased indices of systemic inflammation. Mechanistically, the phenotype is caused by a block in Atg9a‐Fam134b‐LC3β and Atg9a‐Sec62‐LC3β interactions, and defective reticulophagy, the autophagic recycling of the ER. Inhibition of ATase1/ATase2 acetyltransferase enzymes downstream of AT‐1 restores reticulophagy and rescues the phenotype of the animals. These data suggest that inappropriately elevated acetyl‐CoA flux into the ER directly induces defects in autophagy and recycling of subcellular structures and that this diversion of acetyl‐CoA from cytosol to ER is causal in the progeria phenotype. Collectively, these data establish the cytosol‐to‐ER flux of acetyl‐CoA as a novel event that dictates the pace of aging phenotypes and identify intracellular acetyl‐CoA‐dependent homeostatic mechanisms linked to metabolism and inflammation.  相似文献   

18.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

19.
Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin‐like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain‐infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion‐induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126‐induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD‐95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126‐induced neuron loss and degeneration. Our findings suggest that DLP1‐dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc‐associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.  相似文献   

20.
The Sec1/Munc18 (SM) proteins constitute a conserved family with essential functions in SNARE‐mediated membrane fusion. Recently, a new protein–protein interaction site in Sec1p, designated the groove, was proposed. Here, we show that a sec1 groove mutant yeast strain, sec1(w24), displays temperature‐sensitive growth and secretion defects. The yeast Sec1p and mammalian Munc18‐1 grooves were shown to play an important role in the interaction with the SNAREs Sec9p and SNAP‐25b, respectively. Incubation of SNAP‐25b with the Munc18‐1 groove mutant resulted in a lag in the kinetics of SNARE complex assembly in vitro when compared with wild‐type Munc18‐1. The SNARE regulator SRO7 was identified as a multicopy suppressor of sec1(w24) groove mutant and an intact Sec1p groove was required for the plasma membrane targeting of Sro7p–SNARE complexes. Simultaneous inactivation of Sec1p groove and SRO7 resulted in reduced levels of exocytic SNARE complexes. Our results identify the groove as a conserved interaction surface in SM proteins. The results indicate that this structural element is important for interactions with Sec9p/SNAP‐25 and participates, in concert with Sro7p, in the initial steps of SNARE complex assembly.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号