首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

A gasotransmitter hydrogen sulfide (H2S) plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides cardioprotection in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore opening and oxidative stress and increase of autophagy in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via down-regulation of endoplasmic reticulum stress (ERS) in the aged hearts is unclear.

Methods

The aged H9C2 cells (the cardiomyocytes line) were induced using H2O2 and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. Related protein expressions were detected through Western blot.

Results

In the present study, we found that 30 μM H2O2 induced H9C2 cells senescence but not apoptosis. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9 and the release of cytochrome c. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and decreased the expression of GRP 78, CHOP, cleaved caspase-12, ATF 4, ATF 6 and XBP-1 and the phosphorylation of PERK, eIF 2α and IRE 1α. Additionally, NaHS increased Bcl-2 expression. PC alone did not provide cardioprotection in H/R-treated aged cardiomyocytes, which was significantly restored by the supplementation of NaHS. The beneficial role of NaHS was similar to the supply of 4-PBA (an inhibitor of ERS), GSK2656157 (an inhibitor of PERK), STF083010 (an inhibitor of IRE 1α), respectively, during PC.

Conclusion

Our results suggest that the recovery of myocardial protection from PC by exogenous H2S is associated with the inhibition of ERS via down-regulating PERK-eIF 2α-ATF 4, IRE 1α-XBP-1 and ATF 6 pathways in the aged cardiomyocytes.
  相似文献   

3.

Introduction

The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known.

Objectives

This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism.

Methods

Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol?1) and future, predicted elevated CO2 (eCO2, 650 µmol mol?1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars).

Results

The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment.

Conclusion

This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.
  相似文献   

4.

Background

Airway epithelium is an active and important component of the immunological response in the pathophysiology of obstructive lung diseases. Recent studies suggest an important role for vitamin D3 in asthma severity and treatment response.

Objective

Our study evaluated the influence of an active form of vitamin D3 on the expression of selected mediators of allergic inflammation in the respiratory epithelium.

Material and Methods

Primary nasal and bronchial epithelial cells were exposed to1,25D3 for 1 hour and were then stimulated or not with IL-4, TNF-α, LPS, and poly I:C. After 24 hours TSLP, IL-33, and IL-25 protein levels were measured in culture supernatants usingELISAandmRNAlevels in cells by real time PCR.

Results

1,25D3 increased TSLP concentration in unstimulated nasal epithelial cells, but did not influence IL-33 and IL-25 expression. In IL-4-stimulated epithelial cell cultures 1,25D3 mostly inhibited TSLP and IL-33 expression. In LPS-treated cultures 1,25D3 decreased IL-33 expression. Simultaneously 1,25D3 augmented IL-25 production in the same model of stimulation.

Conclusion

Our study revealed the dual nature of vitamin D3 manifested in both pro- and anti-inflammatory properties observed in airway epithelial cells.
  相似文献   

5.

Background

Lung protective mechanical ventilation (MV) is the corner stone of therapy for ARDS. However, its use may be limited by respiratory acidosis.This study explored feasibility of, effectiveness and safety of low flow extracorporeal CO2 removal (ECCO2R).

Methods

This was a prospective pilot study, using the Abylcap® (Bellco) ECCO2R, with crossover off-on-off design (2-h blocks) under stable MV settings, and follow up till end of ECCO2R. Primary endpoint for effectiveness was a 20% reduction of PaCO2 after the first 2-h. Adverse events (AE) were recorded prospectively.We included 10 ARDS patients on MV, with PaO2/FiO2?<?150 mmHg, tidal volume?≤?8 mL/kg with positive end-expiratory pressure ≥?5 cmH2O, FiO2 titrated to SaO2 88–95%, plateau pressure ≥?28 cmH2O, and respiratory acidosis (pH <7.25).

Results

After 2-h of ECCO2R, 6 patients had a ≥?20% decrease in PaCO2 (60%); PaCO2 decreased 28.4% (from 58.4 to 48.7 mmHg, p?=?0.005), and pH increased (1.59%, p?=?0.005). ECCO2R was hemodynamically well tolerated. During the whole period of ECCO2R, 6 patients had an AE (60%); bleeding occurred in 5 patients (50%) and circuit thrombosis in 3 patients (30%), these were judged not to be life threatening.

Conclusions

In ARDS patients, low flow ECCO2R significantly reduced PaCO2 after 2 h, Follow up during the entire ECCO2R period revealed a high incidence of bleeding and circuit thrombosis.

Trial registration

https://clinicaltrials.gov identifier: NCT01911533, registered 23 July 2013.
  相似文献   

6.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

7.

Background and aims

Elemental uptake in serpentine floras in eastern North America is largely unknown. The objective of this study was to determine major and trace element concentrations in soil and leaves of three native pseudo-metallophyte C4 grasses in situ at five sites with three very different soil types, including three serpentine sites, in eastern USA.

Methods

Pseudo-total and extractible concentrations of 15 elements were measured and correlated from the soils and leaves of three species at the five sites.

Results

Element concentrations in soils of pseudo-metallophytes varied up to five orders of magnitude. Soils from metalliferous sites exhibited higher concentrations of their characteristic elements than non-metalliferous. In metallicolous populations, elemental concentrations depended on the element. Concentrations of major elements (Ca, Mg, K) in leaves were lower than typical toxicity thresholds, whereas concentrations of Zn were higher.

Conclusions

In grasses, species can maintain relatively low metal concentrations in their leaves even when soil concentrations are richer. However, in highly Zn-contaminated soil, we found evidence of a threshold concentration above which Zn uptake increases drastically. Finally, absence of main characteristics of serpentine soil at one site indicated the importance of soil survey and restoration to maintain serpentinophytes communities and avoid soil encroachment.
  相似文献   

8.

Objective

To investigate the effect of H2O2 on the migration and antioxidant defense of mesenchymal stem cells (MSCs) and the neurotrophic effects of H2O2-treated MSCs on spinal cord injury (SCI).

Results

Sublethal concentrations of H2O2 decreased cell migration and expression of CXCR4 and CCR2 as well as Nrf2 expression in MSCs. In the second phase, transplantation of treated and untreated MSCs to SCI caused minor changes in locomotor dysfunction. There was a significantly difference between cell-treated and spinal cord injury groups in expression of BDNF (brain-derived neurotrophic factor). Transplantation of H2O2-treated cells caused an increase in BDNF expression compared to non-treated cells.

Conclusion

Transplantation of H2O2-treated stem cells may have protective effects against SCI through by increasing neurotrophic factors.
  相似文献   

9.

Background

The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.

Results

This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. The repeat domains of EccB1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD1has a ubiquitin-like fold and forms a dimer with a negatively charged groove.

Conclusions

These structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.
  相似文献   

10.

Background

Mitochondria exhibit a dynamic morphology in cells and their biogenesis and function are integrated with the nuclear cell cycle. In mitotic cells, the filamentous network structure of mitochondria takes on a fragmented form. To date, however, whether mitochondrial fusion activity is regulated in mitosis has yet to be elucidated.

Findings

Here, we report that mitochondria were found to be fragmented in G2 phase prior to mitotic entry. Mitofusin 1 (Mfn1), a mitochondrial fusion protein, interacted with cyclin B1, and their interactions became stronger in G2/M phase. In addition, MARCH5, a mitochondrial E3 ubiquitin ligase, reduced Mfn1 levels and the MARCH5-mediated Mfn1 ubiquitylation were enhanced in G2/M phase.

Conclusions

Mfn1 is degraded through the MARCH5-mediated ubiquitylation in G2/M phase and the cell cycle-dependent degradation of Mfn1 could be facilitated by interaction with cyclin B1/Cdk1 complexes.
  相似文献   

11.

Purpose

The increasing use of engineered nanomaterials (ENMs) in industrial applications and consumer products is leading to an inevitable release of these materials into the environment. This makes it necessary to assess the potential risks that these new materials pose to human health and the environment. Life cycle assessment (LCA) methodology has been recognized as a key tool for assessing the environmental performance of nanoproducts. Until now, the impacts of ENMs could not be included in LCA studies due to a lack of characterization factors (CFs). This paper provides a methodological framework for identifying human health CFs for ENMs.

Methods

The USEtox? model was used to identify CFs for assessing the potential carcinogenic and non-carcinogenic effects on human health caused by ENM emissions in both indoor (occupational settings) and outdoor environments. Nano-titanium dioxide (nano-TiO2) was selected for defining the CFs in this study, as it is one of the most commonly used ENMs. For the carcinogenic effect assessment, a conservative approach was adopted; indeed, a critical dose estimate for pulmonary inflammation was assumed.

Results and discussion

We propose CFs for nano-TiO2 from 5.5E?09 to 1.43E?02 cases/kgemitted for both indoor and outdoor environments and for carcinogenic and non-carcinogenic effects.

Conclusions

These human health CFs for nano-TiO2 are an important step toward the comprehensive application of LCA methodology in the field of nanomaterial technology.
  相似文献   

12.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

13.

Background

In this study, we optimized the process for enhancing amylase production from Pseudomonas balearica VITPS19 isolated from agricultural lands in Kolathur, India.

Methods

Process optimization for enhancing amylase production from the isolate was carried out by Response Surface Methodology (RSM) with optimized chemical and physical sources using Design expert v.7.0. A central composite design was used to evaluate the interaction between parameters. Interaction between four factors–maltose (C-source), malt extract (Nsource), pH, and CaCl2 was studied.

Results

The factors pH and CaCl2 concentration were found to affect amylase production. Validation of the experiment showed a nearly twofold increase in alpha amylase production.

Conclusion

Amylase production was thus optimized and increased yield was achieved.
  相似文献   

14.

Objectives

To improve H2 production, the green algae Chlamydomonas reinhardtii cc849 was co-cultured with Azotobacter chroococcum.

Results

The maximum H2 production of the co-culture was 350% greater than that of the pure algal cultures under optimal H2 production conditions. The maximum growth and the respiratory rate of the co-cultures were about 320 and 300% of the controls, and the dissolved O2 of co-cultures was decreased 74%. Furthermore, the in vitro maximum hydrogenase activity of the co-culture was 250% greater than that of the control, and the in vivo maximum hydrogenase activity of the co-culture was 1.4-fold greater than that of the control. In addition, the maximum starch content of co-culture was 1400% that of the control.

Conclusions

Azotobacter chroococcum improved the H2 production of the co-cultures by decreasing the O2 content and increasing the growth and starch content of the algae and the hydrogenase activity of the co-cultures relative to those of pure algal cultures.
  相似文献   

15.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

16.

Objectives

To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l?1) on the performance of EGSB reactors (R15 and R25, respectively) for H2 production.

Results

A decrease in the HRT from 8 to 4 h favored the H2 yield and H2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H2 g COD?1 and 0.23 ± 0.024 l H2 h?1 l?1, respectively. H2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H2 g COD?1 and 0.31 ± 0.032 l H2 h?1 l?1, respectively. The main metabolites produced were butyric, acetic and lactic acids.

Conclusions

The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.
  相似文献   

17.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

18.

Background and aims

Microbial communities and their associated enzyme activities affect the quantity and chemical quality of carbon in soil. We aimed to evaluate the biochemical mechanisms underlying how N2-fixing species influences soil organic carbon chemical composition through soil microbial functional groups and enzyme activities.

Methods

We examined the effects of N2-fixing species mixed with Eucalyptus on soil carbon storage, and the chemical composition of an 8-year-old pure Eucalyptus urophylla plantation (PP) and a mixed E.urophylla and Acacia mangium plantation (MP).

Results

The soil carbon stock and recalcitrant carbon chemical component significantly increased in surface soil in MP. The total PLFAs and bacterial PLFAs increased by 29.1% and 27.0% in cool-dry season, while in the warm-wet season, the total PLFAs and bacterial PLFAs increased by 13.1% and 27.3%, respectively. However, the fungal PLFAs decreased significantly in warm-wet season in MP. The total activity of the cellulose-degrading enzyme β-glucosidase was significantly greater with mixed N2-fixing species in both dry-cool and wet-warm season. The increase in the Alk-C/O-Alk-C ratio and SOC was strongly associated with both C-acquisition activity and bacterial community.

Conclusions

Our findings highlight the importance of N2-fixing species in regulating both soil microbial communities and their functioning in association with soil extracellular enzyme activities, which contribute to the increased soil carbon storage and recalcitrant carbon composition in Eucalyptus plantations.
  相似文献   

19.

Objectives

To investigate the feasibility of coupling carbonyl cyanide m-chlorophenylhydrazone-regulated photohydrogen production by Tetraselmis subcordiformis in a photobioreactor to an alkaline fuel cell (AFC).

Results

H2 evolution kinetics in the AFC integrated process was characterized. The duration of H2 evolution was prolonged and its yield was improved about 1.5-fold (to 78 ± 5 ml l?1) compared with that of the process without AFC. Improved H2 yield was possibly caused by removal of H2 feedback inhibition by H2 consumption in situ. Decreases in the H2 production rate correlated with the gradual deactivation of PSII and hydrogenase activities. The H2 yield was closely associated with catabolism of starch and protein.

Conclusion

A marine green algal CO2-supplemented culture integrated with in situ H2-consumption by an AFC system was developed as a viable protocol for the H2 production.
  相似文献   

20.

Objectives

Taxoid 10β-O-acetyl transferase (DBAT) was redesigned to enhance its catalytic activity and substrate preference for baccatin III and taxol biosynthesis.

Results

Residues H162, D166 and R363 were determined as potential sites within the catalytic pocket of DBAT for molecular docking and site-directed mutagenesis to modify the activity of DBAT. Enzymatic activity assays revealed that the kcat/KM values of mutant H162A/R363H, D166H, R363H, D166H/R363H acting on 10-deacetylbaccatin III were about 3, 15, 26 and 60 times higher than that of the wild type of DBAT, respectively. Substrate preference assays indicated that these mutants (H162A/R363H, D166H, R363H, D166H/R363H) could transfer acetyl group from unnatural acetyl donor (e.g. vinyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate and isoamyl acetate) to 10-deacetylbaccatin III.

Conclusion

Taxoid 10β-O-acetyl transferase mutants with redesigned active sites displayed increased catalytic activities and modified substrate preferences, indicating their possible application in the enzymatic synthesis of baccatin III and taxol.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号