首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK‐deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK‐deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT‐A, IFT‐B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT‐B, but not IFT‐A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia.  相似文献   

2.
Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the intestinal cell kinase (ICK)/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We show here that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/ Joubert syndrome (JBTS)36, a protein in which mutations cause JBTS. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20 altogether regulate the IFT turnaround process under the control of ICK.  相似文献   

3.
Background information. The assembly and maintenance of cilia depend on IFT (intraflagellar transport) mediated by molecular motors and their interplay with IFT proteins. Here, we have analysed the involvement of IFT proteins in the ciliogenesis of mammalian photoreceptor cilia. Results. Electron microscopy revealed that ciliogenesis in mouse photoreceptor cells follows an intracellular ciliogenesis pathway, divided into six distinct stages. The first stages are characterized by electron‐dense centriolar satellites and a ciliary vesicle, whereas the formations of the ciliary shaft and the light‐sensitive outer segment discs are features of the later stages. IFT proteins were associated with ciliary apparatus during all stages of photoreceptor cell development. Conclusions. Our data conclusively provide evidence for the participation of IFT proteins in photoreceptor cell ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium. In advanced stages of ciliogenesis the ciliary localization of IFT proteins indicates a role in IFT as is seen in mature cilia. A prominent accumulation of IFT proteins in the periciliary cytoplasm at the base of the cilia in these stages most probably resembles a reserve pool of IFT molecules for further delivery into the growing ciliary shaft and their subsequent function in IFT. Nevertheless, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis may indicate roles of IFT proteins beyond their well‐established function for IFT in mature cilia and flagella.  相似文献   

4.
The biogenesis of the primary cilium is coordinated with cell cycle exit/re-entry in most types of cells. After serum starvation, the cilia-generating cells enter quiescence and produce the primary cilium; upon re-addition of serum, they re-enter the cell cycle and resorb the cilium. We previously identified novel mechanisms to link cell cycle progression and ciliogenesis by high-content genome-wide RNAi cell-based screening. In the present study, we pay attention to reveal the impact of mRNA splicing on cilia assembly after mitosis of cell cycle. We demonstrate that splicing regulators such as SON and XAB2 play an important role in mitosis exit, and thus affect ciliogenesis in G1/G0 phases. Knockdown of the splicing regulators in hTERT-RPE1 cells caused abnormal G2/M arrest under both serum addition and serum starvation, indicating defects in mitosis exit. Moreover, the knockdown cells failed to assemble the cilia under serum starvation and an inhibition of mRNA splicing using SSA, a spliceosome inhibitor, also revealed ciliogenesis defect. Finally, we show that the SSA-treated zebrafish display abnormal vascular development as a ciliary defect. These findings suggest the pivotal role of mRNA splicing regulators in cilia assembly and underscore the importance of mitotic regulation in ciliogenesis.  相似文献   

5.
The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage‐gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly. Interference with KV10.1 ciliary localization abolishes not only the effects on ciliary disassembly, but also KV10.1‐induced tumor progression in vivo. Conversely, upon knockdown of KV10.1, ciliary disassembly is impaired, proliferation is delayed, and proliferating cells show prominent primary cilia. Thus, modulation of ciliogenesis by KV10.1 can explain the influence of KV10.1 expression on the proliferation of normal cells and is likely to be a major mechanism underlying its tumorigenic effects.  相似文献   

6.
Centrosomes serve to organize new centrioles in cycling cells, whereas in quiescent cells they assemble primary cilia. We have recently shown that the mitochondrial porin VDAC3 is also a centrosomal protein that is predominantly associated with the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes. Here, we show that depletion of VDAC3 causes inappropriate ciliogenesis in cycling cells, while expression of GFP-VDAC3 suppresses ciliogenesis in quiescent cells. Mps1 also negatively regulates ciliogenesis, and the inappropriate ciliogenesis caused by VDAC3 depletion can be bypassed by targeting Mps1 to centrosomes independently of VDAC3. Thus, our data show that a VDAC3-Mps1 module at the centrosome promotes ciliary disassembly during cell cycle entry and suppresses cilia assembly in proliferating cells. Our data also suggests that VDAC3 might be a link between mitochondrial dysfunction and ciliopathies in mammalian cells.  相似文献   

7.
Cilia are specialized organelles that play an important role in several biological processes, including mechanosensation, photoperception, and osmosignaling. Mutations in proteins localized to cilia have been implicated in a growing number of human diseases. In this study, we demonstrate that the von Hippel-Lindau (VHL) protein (pVHL) is a ciliary protein that controls ciliogenesis in kidney cells. Knockdown of pVHL impeded the formation of cilia in mouse inner medullary collecting duct 3 kidney cells, whereas the expression of pVHL in VHL-negative renal cancer cells rescued the ciliogenesis defect. Using green fluorescent protein-tagged end-binding protein 1 to label microtubule plus ends, we found that pVHL does not affect the microtubule growth rate but is needed to orient the growth of microtubules toward the cell periphery, a prerequisite for the formation of cilia. Furthermore, pVHL interacts with the Par3-Par6-atypical PKC complex, suggesting a mechanism for linking polarity pathways to microtubule capture and ciliogenesis.  相似文献   

8.
Primary cilia are microtubule based sensory organelles that play an important role in maintaining cellular homeostasis. Malfunctioning results in a number of abnormalities, diseases (ciliopathies) and certain types of cancer. Morphological and biochemical knowledge on cilia/flagella, (early) ciliogenesis and intraflagellar transport is often obtained from model systems (e.g. Chlamydomonas) or from multi ciliary cells like lung or kidney epithelium.In this study endothelial cells in isolated human umbilical veins (HUVs) and cultured human umbilical vein endothelial cells (HUVECs) are compared and used to study primary ciliogenesis. By combining fluorescence microscopy, SEM, 2D and 3D TEM techniques we found that under the tested culturing conditions 60% of cobblestone endothelial cells form a primary cilium. Only a few of these cilia are present (protruding) on the endothelial cell surface, meaning that most primary cilia are in the cytoplasm (non-protruding). This was also observed in situ in the endothelial cells in the umbilical vein. The exact function(s?) of these non-protruding cilia remains unclear.Ultra-structural analysis of cultured HUVECs and the endothelial layer of the human umbilical veins reveal that there are: vesicles inside the ciliary pocket during the early stages of ciliogenesis; tubules/vesicles from the cytoplasm fuse with the ciliary sheath; irregular axoneme patterns, and two round, membranous vesicles inside the basal body.We conclude that cobblestone cultured HUVECs are comparable to the in vivo epithelial lining of the umbilical veins and therefore provide a well defined, relatively simple human model system with a reproducible number of non-protruding primary cilia for studying ciliogenesis.  相似文献   

9.
Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.  相似文献   

10.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

11.
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.  相似文献   

12.

Background  

Mutations in Nek1 (NIMA-Related Kinase 1) are causal in the murine models of polycystic kidney disease kat and kat 2J . The Neks are known as cell cycle kinases, but recent work in protists has revealed that in addition to roles in the regulation of cell cycle progression, some Neks also regulate cilia. In most cells, cilia are disassembled prior to mitosis and are regenerated after cytokinesis. We propose that Neks participate in the coordination of ciliogenesis with cell cycle progression. Mammalian Nek1 is a candidate for this activity because renal cysts form in response to dysfunctional ciliary signalling.  相似文献   

13.
Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry   总被引:3,自引:0,他引:3  
The primary cilium is an antenna-like organelle that is dynamically regulated during the cell cycle. Ciliogenesis is initiated as cells enter quiescence, whereas resorption of the cilium precedes mitosis. The mechanisms coordinating ciliogenesis with the cell cycle are unknown. Here we identify the centrosomal protein Nde1 (nuclear distribution gene E homologue 1) as a negative regulator of ciliary length. Nde1 is expressed at high levels in mitosis, low levels in quiescence and localizes at the mother centriole, which nucleates the primary cilium. Cells depleted of Nde1 have longer cilia and a delay in cell cycle re-entry that correlates with ciliary length. Knockdown of Nde1 in zebrafish embryos results in increased ciliary length, suppression of cell division, reduction of the number of cells forming the Kupffer's vesicle and left-right patterning defects. These data suggest that Nde1 is an integral component of a network coordinating ciliary length with cell cycle progression and have implications for understanding the transition from a quiescent to a proliferative state.  相似文献   

14.
Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery, which contains the IFT-A and IFT-B complexes powered by the kinesin-2 and dynein-2 motors. Mutations in genes encoding subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies. Some subunits of the IFT-B complex, including IFT52, IFT80, and IFT172, are also mutated in skeletal ciliopathies. We here show that IFT52 variants found in individuals with short-rib polydactyly syndrome (SRPS) are compromised in terms of formation of the IFT-B holocomplex from two subcomplexes and its interaction with heterotrimeric kinesin-II. IFT52-knockout (KO) cells expressing IFT52 variants that mimic the cellular conditions of individuals with SRPS demonstrated mild ciliogenesis defects and a decrease in ciliary IFT-B level. Furthermore, in IFT52-KO cells expressing an SRPS variant of IFT52, ciliary tip localization of ICK/CILK1 and KIF17, both of which are likely to be transported to the tip via binding to the IFT-B complex, was significantly impaired. Altogether these results indicate that impaired anterograde trafficking caused by a decrease in the ciliary level of IFT-B or in its binding to kinesin-II underlies the ciliary defects found in skeletal ciliopathies caused by IFT52 variations.  相似文献   

15.
A primary cilium is a microtubule‐based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two‐hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co‐immunoprecipitation assays show that Akt interacts with INVS via the C‐terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864–866 that are required not only for Akt interaction, but also for INVS dimerization. Co‐localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF‐AA. Akt‐null MEF cells as well as siRNA‐mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead‐ or NPHP2‐related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt–INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2.  相似文献   

16.
Cilia serve as sensory devices in a diversity of organisms and their defects contribute to many human diseases. In primary cilia of kidney cells, the transient receptor potential polycystin (TRPP) channels polycystin-1 (PC-1) and polycystin-2 (PC-2) act as a mechanosensitive channel, with defects resulting in autosomal dominant polycystic kidney disease. In sensory cilia of Caenorhabditis elegans male-specific neurons, the TRPPs LOV-1 and PKD-2 are required for mating behavior. The mechanisms regulating TRPP ciliary localization and function are largely unknown. We identified the regulatory subunit of the serine-threonine casein kinase II (CK2) as a binding partner of LOV-1 and human PC-1. CK2 and the calcineurin phosphatase TAX-6 modulate male mating behavior and PKD-2 ciliary localization. The phospho-defective mutant PKD-2(S534A) localizes to cilia, whereas a phospho-mimetic PKD-2(S534D) mutant is largely absent from cilia. Calcineurin is required for PKD-2 ciliary localization, but is not essential for ciliary gene expression, ciliogenesis, or localization of cilium structural components. This unanticipated function of calcineurin may be important for regulating ciliary protein localization. A dynamic phosphorylation-dephosphorylation cycle may represent a mechanism for modulating TRPP activity, cellular sensation, and ciliary protein localization.  相似文献   

17.
Non‐motile primary cilium is an antenna‐like structure whose defect is associated with a wide range of pathologies, including developmental disorders and cancer. Although mechanisms regulating cilia assembly have been extensively studied, how cilia disassembly is regulated remains poorly understood. Here, we report unexpected roles of Dishevelled 2 (Dvl2) and interphase polo‐like kinase 1 (Plk1) in primary cilia disassembly. We demonstrated that Dvl2 is phosphorylated at S143 and T224 in a manner that requires both non‐canonical Wnt5a ligand and casein kinase 1 epsilon (CK1ε), and that this event is critical to interact with Plk1 in early stages of the cell cycle. The resulting Dvl2–Plk1 complex mediated Wnt5a–CK1ε–Dvl2‐dependent primary cilia disassembly by stabilizing the HEF1 scaffold and activating its associated Aurora‐A (AurA), a kinase crucially required for primary cilia disassembly. Thus, via the formation of the Dvl2–Plk1 complex, Plk1 plays an unanticipated role in primary cilia disassembly by linking Wnt5a‐induced biochemical steps to HEF1/AurA‐dependent cilia disassembly. This study may provide new insights into the mechanism underlying ciliary disassembly processes and various cilia‐related disorders.  相似文献   

18.
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.  相似文献   

19.
20.
Motile cilia of epithelial multiciliated cells transport vital fluids along organ lumens to promote essential respiratory, reproductive and brain functions. Progenitors of multiciliated cells undergo massive and coordinated organelle remodelling during their differentiation for subsequent motile ciliogenesis. Defects in multiciliated cell differentiation lead to severe cilia‐related diseases by perturbing cilia‐based flows. Recent work designated the machinery of mitosis as the orchestrator of the orderly progression of differentiation associated with multiple motile cilia formation. By examining the events leading to motile ciliogenesis with a methodological prism of mitosis, we contextualise and discuss the recent findings to broaden the spectrum of questions related to the differentiation of mammalian multiciliated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号