首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1–3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1–3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1–3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels.

  相似文献   

2.
The trafficking of ionotropic glutamate receptors to and from synaptic sites is regulated by proteins that interact with their cytoplasmic C-terminal domain. Profilin IIa (PfnIIa), an actin-binding protein expressed in the brain and recruited to synapses in an activity-dependent manner, was shown previously to interact with the C-terminal domain of the GluK2b subunit splice variant of kainate receptors (KARs). Here, we characterize this interaction and examine the role of PfnIIa in the regulation of KAR trafficking. PfnIIa directly and specifically binds to the C-terminal domain of GluK2b through a diproline motif. Expression of PfnIIa in transfected COS-7 cells and in cultured hippocampal neurons from PfnII-deficient mice decreases the level of extracellular of homomeric GluK2b as well as heteromeric GluK2a/GluK2b KARs. Our data suggest a novel mechanism by which PfnIIa exerts a dual role on the trafficking of KARs, by a generic inhibition of clathrin-mediated endocytosis through its interaction with dynamin-1, and by controlling KARs exocytosis through a direct and specific interaction with GluK2b.  相似文献   

3.
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity‐dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low‐level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11‐dependent, transferrin‐positive endosomes into spines. Dominant‐negative Rab11 or the recycling inhibitor primaquine prevents the kainate‐evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G‐protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low‐ or moderate‐level agonist activation and can provide additional flexibility to synaptic regulation.   相似文献   

4.
Glutamate receptors are fundamental for control synaptic transmission, synaptic plasticity, and neuronal excitability. However, many of the molecular mechanisms underlying their trafficking remain elusive. We previously demonstrated that the small GTPase Rab17 regulates dendritic trafficking in hippocampal neurons. Here, we investigated the role(s) of Rab17 in AMPA receptor (AMPAR) and kainate receptor (KAR) trafficking. Although Rab17 knockdown did not affect surface expression of the AMPAR subunit GluA1 under basal or chemically induced long term potentiation conditions, it significantly reduced surface expression of the KAR subunit GluK2. Rab17 co-localizes with Syntaxin-4 in the soma, dendritic shaft, the tips of developing hippocampal neurons, and in spines. Rab17 knockdown caused Syntaxin-4 redistribution away from dendrites and into axons in developing hippocampal neurons. Syntaxin-4 knockdown reduced GluK2 but had no effect on GluA1 surface expression. Moreover, overexpression of constitutively active Rab17 promoted dendritic surface expression of GluK2 by enhancing Syntaxin-4 translocation to dendrites. These data suggest that Rab17 mediates the dendritic trafficking of Syntaxin-4 to selectively regulate dendritic surface insertion of GluK2-containing KARs in rat hippocampal neurons.  相似文献   

5.
EMBO J (2013) 32: 496–510 doi:10.1038/emboj.2012.334; published online January042013Alteration of the efficacy of excitatory synaptic transmission between neurons is a critical element in the processes of learning, memory, and behaviour. Despite decades of research aimed at elucidating basic cellular mechanisms underlying synaptic plasticity, new pathways and permutations continue to be discovered. Carta et al (2013) now show that activation of the calcium/calmodulin dependent kinase II (CaMKII) induces an unusual postsynaptic form of long-term depression (LTD) at the hippocampal mossy fibre synapse by promoting lateral diffusion of kainate receptors (KARs), a family of ionotropic glutamate receptors (iGluRs) that influence pyramidal neuron excitability. This report therefore reveals a new and mechanistically unique way of fine-tuning synaptic plasticity at this central synapse in the hippocampus.Information transfer within the nervous system is regulated at the synaptic level by diverse cellular mechanisms. Synaptic efficacy is not static (i.e., it is ‘plastic''), and the capacity to adjust the strength of communication between neurons in a network has been shown to be a critical component of diverse aspects of brain function that include many forms of behavioural learning (Martin et al, 2000). The complex means by which neurons adjust their synaptic properties in response to changes in local and global activity in the central nervous system has been the subject of intensive investigation spanning multiple decades (Malenka and Bear, 2004; Feldman, 2009). Nonetheless, new mechanisms underlying plasticity of excitatory and inhibitory synaptic transmission continue to be elucidated; these can vary depending on the experimental parameters for induction of plasticity, the particular type of synapse under investigation, and even the prior history of activation at the synapse. Long-term potentiation (LTP) and LTD of excitatory synaptic transmission are two well-known phenomena in which efficacy is increased or decreased, respectively, and at many synapses in the CNS occur through concomitant alterations in the number of postsynaptic iGluRs. The movement of excitatory receptors in and out of synapses, and more generally to and from the neuronal plasma membrane, is dictated by their association with a wide variety of scaffolding and chaperone proteins, whose interactions are often controlled by various protein kinases (Anggono and Huganir, 2012).It is generally appreciated now that long-term synaptic plasticity can be elicited by a variety of mechanisms even within a single type of synaptic connection. In addition to postsynaptic alterations in receptor content, for example, synaptic efficacy can also be tuned by regulated alterations in the probability of vesicular release of the neurotransmitter. Until recently, this presynaptic form of plasticity was thought to be the exclusive mechanism for altering excitatory synaptic strength at a morphologically unusual synapse in the hippocampus formed between large bouton-like presynaptic terminals arising from granule cell axons, or mossy fibres, and proximal dendrites on CA3 pyramidal neurons (Nicoll and Schmitz, 2005). These synaptic connections allow for single dentate granule cells to profoundly influence the likelihood of action potential firing in CA3 pyramidal neurons in a frequency-dependent manner, and for that reason have been referred to as ‘conditional detonator'' synapses (Henze et al, 2002). The precise mechanisms that lead to increased vesicular release probability following LTP-inducing stimulation of mossy fibre axons, including a potential role for retrograde signalling, remain the subject of debate, although there is general consensus that activation of presynaptic protein kinase A (PKA) is a key step in this form of synaptic plasticity (Figure 1A). Enhancing release probability impacts signalling through all three types of iGluRs present at mossy fibre synapses—AMPA, NMDA, and KARs. Recently, however, novel postsynaptic forms of mossy fibre plasticity were discovered in which induction protocols specifically increased the number of NMDA receptors (Kwon and Castillo, 2008; Rebola et al, 2008) or decreased the number of KARs (Selak et al, 2009), expanding the mechanistic repertoire at this historical site of focus of research on presynaptic LTP. Alterations in the synaptic content of particular iGluRs could serve as an additional means to fine-tune synaptic integration at the mossy fibre—CA3 synapse and therefore have important consequences for hippocampal network excitability.Open in a separate windowFigure 1Kainate receptor-dependent plasticity mechanisms at the hippocampal mossy fibre–CA3 synapse. (A) Activation of presynaptic receptors enhances glutamate release from the mossy fibre terminals. (B) A spike-timing-dependent plasticity protocol known to activate postsynaptic CaMKII results in long-term synaptic depression. CaMKII phosphorylates the GluK5 kainate receptor subunit, which uncouples the receptor from PSD-95 in the postsynaptic density. This leads to an increase in receptor mobility and diffusion away from the synapse. (C) Low-frequency stimulation of mossy fibres and activation of postsynaptic group 1 mGluRs leads to activation of PKC, which promotes the association of SNAP-25 to the GluK5 kainate receptor subunit and the subsequent endocytosis of synaptic receptors.In this issue, Carta et al (2013) identify a new postsynaptic mechanism for shaping mossy fibre plasticity that is specific to synaptic KARs, which serve to influence temporal integration of synaptic input as well as pyramidal neuron excitability through modulation of intrinsic ion channels. The authors paired postsynaptic depolarization of CA3 pyramidal neurons with a precisely timed presynaptic release of glutamate in a pattern that is known to produce LTP at many central synapses (Feldman, 2012). At mossy fibre synapses, however, this form of spike-timing-dependent plasticity (STDP) instead caused LTD of KAR-mediated excitatory synaptic potentials (KAR-LTD) while leaving AMPA receptor function unaltered (Figure 1B) (Carta et al, 2013). Using a series of genetic and pharmacological manipulations, Carta et al (2013) found that KAR-LTD was dependent upon the activation of postsynaptic KARs themselves, a rise in postsynaptic Ca2+, and CaMKII phosphorylation of a specific protein component of synaptic KARs, the GluK5 subunit. Unlike other mechanisms of postsynaptic mossy fibre plasticity, KAR-LTD was independent of NMDA or metabotropic glutamate receptor activation. Most surprisingly, KAR-LTD did not require receptor endocytosis from the plasma membrane, as is the case with most other forms of postsynaptic depression of excitatory transmission, including a distinct form of KAR-LTD reported previously (Selak et al, 2009) (Figure 1C). Instead, CaMKII-mediated phosphorylation of GluK5 subunits likely uncoupled receptors from the postsynaptic scaffolding protein PSD-95, which then led to enhanced lateral diffusion of KARs out of mossy fibre synapses. As KAR endocytosis was not altered in mossy fibre STDP, the activity-dependent reduction in KAR signalling was effectively limited to those receptors in the synapse. A molecular replacement strategy was employed using biolistic-based expression of mutant KARs in cultured hippocampal slices prepared from KAR knockout mice, which allowed Carta et al (2013) to corroborate their detailed biochemical studies by showing that reconstituted KAR currents in CA3 neurons expressing recombinant GluK5 phosphorylation site substitutions were unable to express KAR-LTD. In summary, KAR-mediated activation of CaMKII leads to phosphorylation of the GluK5 subunit and subsequent KAR-LTD through enhanced lateral mobility of synaptic receptors (Figure 1B).These findings are intriguing for several reasons. Most notably, they stand in stark contrast to studies in which CaMKII activation primarily triggers potentiation, rather than depression, of excitatory synaptic transmission at other synapses (Lisman et al, 2012). CaMKII recently was shown to cause diffusional trapping of AMPA receptor complexes within the postsynaptic density following phosphorylation of a closely associated auxiliary subunit, stargazin (Opazo et al, 2010), which is precisely the opposite of the effects of activation of the enzyme on KAR mobility at mossy fibre synapses. Further, these divergent consequences are both dependent upon carboxy-terminal PDZ interactions with scaffolding proteins, although in each case further research is needed to dissect out the relevant binding partners that control lateral mobility. It is of interest that KAR-LTD required synaptic activation of KARs to initiate signalling via CaMKII, which implies a tight coupling exists between KARs and the holoenzyme in the mossy fibre postsynaptic density. This observation also raises the possibility that activated CaMKII could phosphorylate other targets to effect other, yet-to-be-discovered, changes in synaptic function. Finally, the report by Carta et al expands our understanding of how excitatory synaptic transmission is fine-tuned at an important central synapse and underscores the fact that even well-trod ground (or synapses) continue to yield surprises that inform our understanding of the remarkable mechanistic diversity underlying synaptic plasticity in the CNS.  相似文献   

6.
Rivera R  Rozas JL  Lerma J 《The EMBO journal》2007,26(20):4359-4367
Agonists of kainate receptors (KARs) cause both the opening of the associated ion channels and the activation of signalling pathways driven by G-proteins and PKC. Here we report the existence of an unknown mechanism of KAR autoregulation, involving the interplay of this two signalling mechanisms. Repetitive activation of native KARs evoked the rundown of the ionotropic responses in a manner that was dependent on the activation of PKC. Experiments on recombinant GluR5 expressed in neuroblastoma cells indicated that KARs trigger the activation of PKC and induce the internalization of membrane receptors. This phenomenon depends on the PKC-mediated phosphorylation of serines 879 and 885 of the GluR5-2b subunits, since mutation of these two residues abolished internalization. These results reveal that the non-canonical signalling of KARs is associated with a sensitive mechanism that detects afferent activity. Such a mechanism represents an active way to limit overactivation of the KAR system, by regulating the number of KARs in the cell membrane.  相似文献   

7.
Subunit composition of kainate receptors in hippocampal interneurons   总被引:16,自引:0,他引:16  
Kainate receptor activation affects GABAergic inhibition in the hippocampus by mechanisms that are thought to involve the GluR5 subunit. We report that disruption of the GluR5 subunit gene does not cause the loss of functional KARs in CA1 interneurons, nor does it prevent kainate-induced inhibition of evoked GABAergic synaptic transmission onto CA1 pyramidal cells. However, KAR function is abolished in mice lacking both GluR5 and GluR6 subunits, indicating that KARs in CA1 stratum radiatum interneurons are heteromeric receptors composed of both subunits. In addition, we show the presence of presynaptic KARs comprising the GluR6 but not the GluR5 subunit that modulate synaptic transmission between inhibitory interneurons. The existence of two separate populations of KARs in hippocampal interneurons adds to the complexity of KAR localization and function.  相似文献   

8.
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.  相似文献   

9.
Phosphorylation and SUMOylation of the kainate receptor (KAR) subunit GluK2 have been shown to regulate KAR surface expression, trafficking and synaptic plasticity. In addition, our previous study has shown that a phosphorylation-dependent interaction of 14–3–3τ and GluK2a-containing receptors contributes to the slow decay kinetics of native KAR-EPSCs. However, it is unknown whether SUMOylation participates in the regulation of the interaction between 14–3–3τ and GluK2a-containing receptors. Here we report that SUMOylation of PKC, but not GluK2, represses the binding of 14–3–3τ to GluK2a via decreasing the phosphorylation level of GluK2a. These results suggest that PKC SUMOylation is an important regulator of the 14–3–3 and GluK2a protein complex and may contribute to regulate the decay kinetics of KAR-EPSCs.  相似文献   

10.
Kainate receptors (KARs) are crucial for the regulation of both excitatory and inhibitory neurotransmission, but little is known regarding the mechanisms controlling KAR surface expression. We used super ecliptic pHluorin (SEP)-tagged KAR subunit GluR6a to investigate real-time changes in KAR surface expression in hippocampal neurons. Sindbis virus-expressed SEP-GluR6 subunits efficiently co-assembled with native KAR subunits to form heteromeric receptors. Diffuse surface-expressed dendritic SEP-GluR6 is rapidly internalized following either N-methyl-d-aspartate or kainate application. Sustained kainate or transient N-methyl-d-aspartate application resulted in a slow decrease of base-line surface KAR levels. Surprisingly, however, following the initial loss of surface receptors, a short kainate application caused a long lasting increase in surface-expressed KARs to levels significantly greater than those prior to the agonist challenge. These data suggest that after initial endocytosis, transient agonist activation evokes increased KAR exocytosis and reveal that KAR surface expression is bidirectionally regulated. This process may provide a mechanism for hippocampal neurons to differentially adapt their physiological responses to changes in synaptic activation and extrasynaptic glutamate concentration.  相似文献   

11.
Kainate receptors (KARs) are members of the glutamate receptor family, which also includes two other ionotropic subtypes, i.e. NMDA- and AMPA-type receptors, and types I, II and III metabotropic glutamate receptors. KARs mediate synaptic transmission postynaptically through their ionotropic capacity, while presynaptically, they modulate the release of both GABA and glutamate through operationally diverse modus operandi. At hippocampal mossy fiber (MF)-CA3 synapses, KARs have a biphasic effect on glutamate release, such that, depending on the extent of their activation, a facilitation or depression of glutamate release can be observed. This modulation is posited to contribute to important roles of KARs in short- and long-term plasticity. Elucidation of the modes of action of KARs in their depression and facilitation of glutamate release is beginning to gather impetus. Here we will focus on the cellular mechanisms involved in the modulation of glutamate release by presynaptic KAR activation at MF-CA3 synapses, a field that has seen significant progress in recent years.  相似文献   

12.
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4‐aminopyridine (4‐AP)‐evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post‐synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, and persisted after pre‐treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G‐protein‐independent regulation further in thalamocortical slices, the KAR‐mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca2+ permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+‐induced Ca2+‐release by ryanodine. Thus, the KA‐mediated modulation was contingent on both Ca2+ entry through Ca2+‐permeable KARs and liberation of intracellular Ca2+ stores. Finally, sensitivity to W‐7 indicated that the increased cytosolic [Ca2+] underpinning KAR‐mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre‐synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca2+‐calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G‐protein involvement.

  相似文献   


13.
Kainate receptors (KARs) are a class of ionotropic glutamate receptors that are expressed throughout the central nervous system. The function and subcellular localization of KARs are tightly regulated by accessory proteins. We have previously identified the single-pass transmembrane proteins, Neto1 and Neto2, to be associated with native KARs. In the hippocampus, Neto1, but not Neto2, controls the abundance and modulates the kinetics of postsynaptic KARs. Here we evaluated whether Neto2 regulates synaptic KAR levels in the cerebellum where Neto1 expression is limited to the deep cerebellar nuclei. In the cerebellum, where Neto2 is present abundantly, we found a ∼40% decrease in GluK2-KARs at the postsynaptic density (PSD) of Neto2-null mice. No change, however, was observed in total level of GluK2-KARs, thereby suggesting a critical role of Neto2 on the synaptic localization of cerebellar KARs. The presence of a putative class II PDZ binding motif on Neto2 led us to also investigate whether it interacts with PDZ domain-containing proteins previously implicated in regulating synaptic abundance of KARs. We identified a PDZ-dependent interaction between Neto2 and the scaffolding protein GRIP. Furthermore, coexpression of Neto2 significantly increased the amount of GRIP associated with GluK2, suggesting that Neto2 may promote and/or stabilize GluK2:GRIP interactions. Our results demonstrate that Neto2, like Neto1, is an important auxiliary protein for modulating the synaptic levels of KARs. Moreover, we propose that the interactions of Neto1/2 with various scaffolding proteins is a critical mechanism by which KARs are stabilized at diverse synapses.  相似文献   

14.
Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A.  相似文献   

15.
Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs.  相似文献   

16.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under different splice variant isoforms in the C-terminal domain (GluR7a and GluR7b). Here we have studied the trafficking of GluR7 splice variants in cultured hippocampal neurons from wild-type and KAR mutant mice. We have found that alternative splicing regulates surface expression of GluR7-containing KARs. GluR7a and GluR7b differentially traffic from the ER to the plasma membrane. GluR7a is highly expressed at the plasma membrane, and its trafficking is dependent on a stretch of positively charged amino acids also found in GluR6a. In contrast, GluR7b is detected at the plasma membrane at a low level and retained mostly in the endoplasmic reticulum (ER). The RXR motif of GluR7b does not act as an ER retention motif, at variance with other receptors and ion channels, but might be involved during the assembly process. Like GluR6a, GluR7a promotes surface expression of ER-retained subunit splice variants when assembled in heteromeric KARs. However, our results also suggest that this positive regulation of KAR trafficking is limited by the ability of different combinations of subunits to form heteromeric receptor assemblies. These data further define the complex rules that govern membrane delivery and subcellular distribution of KARs.  相似文献   

17.
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is an important regulator of phosphatidylinositol‐(3,4,5,)‐trisphosphate signalling, which controls cell growth and differentiation. However, PTEN is also highly expressed in the adult brain, in which it can be found in dendritic spines in hippocampus and other brain regions. Here, we have investigated specific functions of PTEN in the regulation of synaptic function in excitatory hippocampal synapses. We found that NMDA receptor activation triggers a PDZ‐dependent association between PTEN and the synaptic scaffolding molecule PSD‐95. This association is accompanied by PTEN localization at the postsynaptic density and anchoring within the spine. On the other hand, enhancement of PTEN lipid phosphatase activity is able to drive depression of AMPA receptor‐mediated synaptic responses. This activity is specifically required for NMDA receptor‐dependent long‐term depression (LTD), but not for LTP or metabotropic glutamate receptor‐dependent LTD. Therefore, these results reveal PTEN as a regulated signalling molecule at the synapse, which is recruited to the postsynaptic membrane upon NMDA receptor activation, and is required for the modulation of synaptic activity during plasticity.  相似文献   

18.
Long term potentiation and long term depression of synaptic responses in the hippocampus are thought to be critical for certain forms of learning and memory, although until recently it has been difficult to demonstrate that long term potentiation or long term depression occurs during hippocampus-dependent learning. Induction of long term potentiation or long term depression in hippocampal slices in vitro modulates phosphorylation of the alpha-amino-3-hydrozy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor subunit GluR1 at distinct phosphorylation sites. In long term potentiation, GluR1 phosphorylation is increased at the Ca2+/calmodulin-dependent protein kinase and protein kinase C site serine 831, whereas in long term depression, phosphorylation of the protein kinase A site serine 845 is decreased. Indeed, phosphorylation of one or both of these sites is required for long term synaptic plasticity and for certain forms of learning and memory. Here we demonstrate that training in a hippocampus-dependent learning task, contextual fear conditioning is associated with increased phosphorylation of GluR1 at serine 831 in the hippocampal formation. This increased phosphorylation is specific to learning, has a similar time course to that in long term potentiation, and like memory and long term potentiation, is dependent on N-methyl-D-aspartate receptor activation during training. Furthermore, the learning-induced increase in serine 831 phosphorylation is present at synapses and is in heteromeric complexes with the glutamate receptor subunit GluR2. These data indicate that a biochemical correlate of long term potentiation occurs at synapses in receptor complexes in a final, downstream, postsynaptic effector of long term potentiation during learning in vivo, further strengthening the link between long term potentiation and memory.  相似文献   

19.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

20.
synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP''s HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号