首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Heat‐killed cells of Lactobacillus plantarum L‐137 are potent inducers of IL‐12 in vitro as well as in vivo and have been shown to have antiallergic, antitumor, and antiviral effects through this induction, which leads to a Th1 type immune response. To determine why L‐137 cells induce much greater IL‐12 production than the type strain Lactobacillus plantarum JCM1149, we examined the differences in their CW components. The L‐137 CW was found to have a higher alanine content and IL‐12p40 induction was significantly greater in comparison with JCM1149 CW, whereas peptidoglycans isolated from both strains did not cause IL‐12p40 induction. Because in purified CW preparations from gram‐positive bacteria, the presence of LTA, the major proinflammatory structure on these bacteria, has been known to have high alanine content, we investigated the responsiveness of both strains to anti‐LTA antibody by flow cytometry. L‐137 cells reacted more with anti‐LTA antibody than did JCM1149 cells. Furthermore, derivative strains of L‐137, cured of a specific plasmid pLTK11 of the 15 endogenous plasmids in wild‐type L‐137, had poor responsiveness to anti‐LTA antibody and showed lower IL‐12p40 inducing activity than the wild‐type L‐137 with pLTK11. Our results suggest that LTA expression on the cell surface causes IL‐12p40 induction, and that the above internal plasmid of L‐137 influences LTA synthesis and expression on the cell surface.  相似文献   

3.
Previous studies have demonstrated that interleukins (ILs) are closely associated with doxorubicin (DOX)‐induced cardiac injury. IL‐5 is an important member of the IL family, and this study was performed to investigate whether IL‐5 affects DOX‐induced cardiac injury and its underlying mechanisms. The cardiac IL‐5 expression was first detected and the results showed that cardiac IL‐5 levels were significantly lower in DOX‐treated mice, and IL‐5 was mainly derived from cardiac macrophage (Mø). In addition, some DOX‐treated mice received an injection of anti‐IL‐5‐neutralizing antibody (nAb), and we found that treatment with a mouse anti‐IL‐5 nAb significantly upregulated the levels of myocardial injury markers, aggravated cardiac dysfunction, increased M1 macrophage (Mø1) and decreased M2 macrophage (Mø2) differentiation, and promoted apoptotic marker expression. Furthermore, the effect of mouse IL‐5 nAb on DOX‐induced Mø differentiation and its role on mouse cardiomyocyte (MCM) cells apoptosis were detected in vitro, and the results exhibited that mouse IL‐5 nAb promoted Mø1 differentiation but inhibited Mø2 differentiation in vitro and alleviated apoptosis in MCM cells. Our results found a mouse anti‐IL‐5 nAb‐aggravated DOX‐induced cardiac injury and dysfunction by alleviating the inflammatory response and myocardial cell apoptosis.  相似文献   

4.
5.
Bovine mastitis is the most common disease in dairy cattle. Bacterial infections are the main cause of mastitis. Lipopolysaccharide (LPS), a major structural component of the cell wall of Escherichia coli, is a good inducer used to replicate inflammation models. 8‐Methoxypsoralen (8‐MOP), a formerly considered photosensitizing agent, has been used in immunotherapy. This study investigated the protective effects of 8‐MOP on LPS‐induced inflammatory injury in bovine mammary epithelial cells (BMECs). LPS treatment (50 μg/mL for 12 hr) caused a decrease in cell viability, morphological damage, and cell apoptosis. Pretreatment with 8‐MOP at concentrations of 25 and 50 μg/ml significantly attenuated LPS‐induced inflammation in BMECs. qRT‐PCR analysis revealed that the messenger RNA expression of inflammatory cytokines and chemokine (interleukin‐1β [IL‐1β], IL‐6, tumor necrosis factor‐α, and IL‐8) was suppressed by 8‐MOP in LPS‐stimulated BMECs. Western blot analysis showed that 8‐MOP could also reduce the protein levels of cyclooxygenase‐2 and promote the translocation of high‐mobility group box 1 from the nucleus to cytoplasm. Furthermore, the anti‐inflammatory property of 8‐MOP was mediated by inhibiting nuclear factor kappa‐light‐chain‐enhancer of activated B cells activation and STAT1 phosphorylation. Taken together, 8‐MOP could protect cells from inflammatory injury induced by LPS, and may be a potential agent against bovine mastitis.  相似文献   

6.
Saikosaponin‐d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti‐inflammatory, anti‐bacterial, anti‐viral and anti‐cancer effects. In the current study we have investigated the effects of Ssd on activated mouse T lymphocytes through the NF‐κB, NF‐AT and AP‐1 signaling pathways, cytokine secretion, and IL‐2 receptor expression. The results demonstrated that Ssd not only suppressed OKT3/CD28‐costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A‐induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA‐induced T cell activation was associated with down‐regulation of NF‐κB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF‐AT and activator protein 1 (AP‐1) of the PMA/Ionomycin‐stimulated T cells. The cell surface markers like IL‐2 receptor (CD25) were also down‐regulated together with decreased production of pro‐inflammatory cytokines of IL‐6, TNF‐α and IFN‐γ. These results indicate that the NF‐κB, NF‐AT and AP‐1 (c‐Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd, so it can be a potential candidate for further study in treating T cell‐mediated autoimmune conditions. J. Cell. Biochem. 107: 303–315, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Asthma is a chronic inflammatory disease induced by Type 2 helper T cells and eosinophils. Vascular cell adhesion molecule‐1 (VCAM‐1) has been implicated in recruiting eosinophils and lymphocytes to pathological sites in asthma as a regulatory receptor. Accordingly, monoclonal antibody (mAb) against VCAM‐1 may attenuate allergic inflammation and pathophysiological features of asthma. We attempted to evaluate whether a recently developed human anti‐VCAM‐1 mAb can inhibit the pathophysiological features of asthma in a murine asthma model induced by ovalbumin (OVA). Leucocyte adhesion inhibition assay was performed to evaluate the in vitro blocking activity of human anti‐VCAM‐1 mAb. OVA‐sensitized BALB/c mice were treated with human anti‐VCAM‐1 mAb or isotype control Ab before intranasal OVA challenge. We evaluated airway hyperresponsiveness (AHR) and bronchoalveolar lavage fluid analysis, measured inflammatory cytokines and examined histopathological features. The human anti‐VCAM‐1 mAb bound to human and mouse VCAM‐1 molecules and inhibited adhesion of human leucocytes in vitro. AHR and inflammatory cell counts in bronchoalveolar lavage fluid were reduced in mice treated with human anti‐VCAM‐1 mAb as compared with a control Ab. The levels of interleukin (IL)‐5 and IL‐13, as well as transforming growth factor‐β, in lung tissue were decreased in treated mice. Human anti‐VCAM‐1 mAb reduced goblet cell hyperplasia and peribronchial fibrosis. In vivo VCAM‐1 expression decreased in the treated group. In conclusion, human anti‐VCAM‐1 mAb attenuated allergic inflammation and the pathophysiological features of asthma in OVA‐induced murine asthma model. The results suggested that human anti‐VCAM‐1 mAb could potentially be used as an additional anti‐asthma therapeutic medicine.  相似文献   

9.
Cationic materials exhibit remarkable anti‐inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant‐induced arthritis (AIA) models were used to test cationic materials for their anti‐inflammatory activity. Cationic dextran (C‐dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti‐inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)‐γ receptor‐deficient mice and macrophage‐depleted rats were used to examine the possible mechanisms of the anti‐inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti‐inflammatory characters. The anti‐inflammatory activity of C‐dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)‐12 expression in peritoneal macrophages, and strong stimulation of IFN‐γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL‐12 and IFN‐γ were enhanced by the cationic materials. Using IFN‐γ receptor knockout mice and macrophage‐depleted rats, we found that IFN‐γ and macrophages played key roles in the anti‐inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C‐dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL‐12 secretion, and that IL‐12 promotes the expression of IFN‐γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN‐γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites.  相似文献   

10.
Schizandrin is a major bioactive constituent of Schisandra chinensis (Turcz.) Baill with antioxidant and anti‐inflammatory properties. The objective of this study was to explore the potential effects of schizandrin on a cell model of myocarditis. The H9c2 cells were treated with schizandrin alone or in combination with lipopolysaccharide (LPS), after which, cell survival, migration, and the release of inflammatory cytokines were assessed. Moreover, downstream effectors and signaling pathways were studied to reveal the possible underlying mechanism. As a result, LPS stimulation induced significant cell damage as cell viability was repressed and the apoptosis was induced. In the meantime, LPS promoted the release of proinflammatory cytokines including interleukin 1β (IL‐1β), IL‐8, IL‐6, and tumor necrosis factor (TNF‐α) while repressing the release of the anti‐inflammatory cytokine IL‐10. Schizandrin could promote H9c2 cell migration and long‐term treatment (7 days) enhanced cell viability. More interestingly, pretreatment with schizandrin attenuated LPS‐induced cell loss and inflammatory response. Besides this, Smad3 was a downstream effector of schizandrin. The beneficial effects of schizandrin on the H9c2 cells were attenuated when Smad3 was overexpressed. Moreover, the silencing of Smad3 deactivated c‐Jun N‐terminal kinase (JNK) and nuclear factor κB (NF‐κB) pathways. This study preliminarily demonstrated that schizandrin prevented LPS‐induced injury in the H9c2 cells and promoted the recovery of myocardial tissues by enhancing cell viability and migration. Schizandrin conferred its beneficial effects possibly by downregulating Smad3 and inhibiting the activation of JNK and NF‐κB pathways.  相似文献   

11.
Stimulation of T cells by the T‐cell receptor (TCR)/CD3 complex results in interleukin‐2 (IL‐2) synthesis and surface expression of the IL‐2 receptor (IL‐2R), which in turn drive T‐cell proliferation. However, the significance of the requirement of IL‐2 in driving T‐cell proliferation, when TCR stimulation itself delivers potential mitogenic signals, is unclear. We show that blocking of IL‐2 synthesis by Cyclosporin A (CsA) suppressed both the Concanavalin A (Con A)‐ and phorbol myristate acetate (PMA)/ionomycin‐induced proliferation of T cells. The latter is also inhibited by anti‐IL‐2R. Kinetic studies showed that T‐cell proliferation begins to become resistant to CsA inhibition by about 12 h and became largely resistant by 18 h of stimulation. PMA, the protein kinase C activator, enhanced Con A‐induced T‐cell proliferation if added only within first 12 h of stimulation, and not after that. Given the fact that, in the present study, TCR is downregulated within 2 h of Con A stimulation and T cells entered the S phase of cell cycle by about 18 h of stimulation, the above results suggest that TCR stimulation provides the initial trigger to the resting T cells, which allows the cells to traverse the first two third portions of G1 phase of cell cycle and become proliferation competent. IL‐2 action begins afterward, delivering the actual proliferation signal(s), allowing the cells to traverse the rest of G1 phase and enter the S phase of the cell cycle. J. Cell. Biochem. 76:37–43, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


13.
14.
Tuberostemonine stereoisomers are natural alkaloids found in Stemona tuberosa, that are known to have anti‐inflammatory and anti‐infective properties. Tuberostemonine alkaloids inhibit inflammation by suppressing the expression of inflammatory mediators such as cyclooxygenase and nitric oxide synthase. However, the direct immunomodulatory properties of tuberostemonine alkaloids in T cells have not been elucidated so far. In this study, the activities in T cells of tuberostemonine N (TbN) and a novel alkaloid, tuberostemonine O (TbO), isolated from S. tuberosa, were investigated. Although TbN did not have a significant effect on cytokine production in splenic T cells, TbO selectively suppressed interleukin (IL)‐2 production. Moreover, TbO, but not TbN, significantly inhibited IL‐2 production by primary CD4+ T cells and delayed the T‐cell proliferation in a dose‐dependent manner. Addition of excess recombinant IL‐2 restored the decreased cell‐division rates in TbO‐treated CD4+ T cells to control levels. Collectively, these findings suggest that the immunomodulatory effects of TbO occurred by the suppression of IL‐2 expression and IL‐2‐induced T‐cell proliferation, suggesting a potential beneficial role of tuberostemonine alkaloids for the control of chronic inflammatory and autoimmune diseases caused by hyperactivated T cells.  相似文献   

15.
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)‐17‐induced inflammatory injury in ATDC5 cells. CCK‐8 and migration assays were used to detect the functions of IL‐7, BIL, and microRNA (miR)‐125a on cell viability and migration. The miR‐125a level was changed by transfection, and tested by real‐time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL‐6 and tumor necrosis factor‐α), matrix metalloproteinases (MMPs), and pathway‐related proteins. Moreover, the enzyme‐linked immunosorbent assay also was used to detect inflammatory factor levels. IL‐7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL‐17‐induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR‐125a, and the miR‐125a mimic could partly reverse the effects of BIL on IL‐17‐injury. Finally, we showed that BIL inhibited the c‐Jun N‐terminal kinase (JNK) and nuclear factor kappa B (NF‐κB) pathways, and the miR‐125a mimic had the opposite effect. BIL inhibited IL‐17‐induced inflammatory injury in ATDC5 cells by downregulation of miR‐125a via JNK and NF‐κB signaling pathways.  相似文献   

16.
17.
Bovine lactoferricin (LfcinB) is a multi‐functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin‐1β) IL‐1β and FGF‐2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL‐1β and FGF‐2 on the expression of cartilage‐degrading enzymes (MMP‐1, MMP‐3, and MMP‐13), destructive cytokines (IL‐1β and IL‐6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL‐4 and IL‐10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti‐inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL‐1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti‐catabolic and anti‐inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. J. Cell. Physiol. 228: 447–456, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
IL‐2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti‐cancer effect. Here, we demonstrated the anti‐cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL‐2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL‐2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL‐2R and down‐regulated the mRNA and protein levels of IL‐2R. Furthermore, TPD7 suppressed the downstream cascades of IL‐2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl‐2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti‐cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL‐2R signalling pathway.  相似文献   

19.
Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti‐apoptosis engineering. Recently, autophagy has received attention as a new anti‐cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti‐apoptosis and pro‐autophagy in CHO cells (DG44) was attempted by co‐overexpressing an anti‐apoptotic protein, Bcl‐2, and a key regulator of autophagy pathway, Beclin‐1, respectively. Co‐overexpression of Bcl‐2 and Beclin‐1 exhibited a longer culture period as well as higher viability during serum‐free suspension culture, compared with the control (without co‐overexpression of Bcl‐2 and Beclin‐1) and Bcl‐2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl‐2 overexpression, Beclin‐1 overexpression successfully induced the increase in the autophagic marker protein, LC3‐II, and autophagosome formation with the decrease in mTOR activity. Co‐immunoprecipitation and qRT‐PCR experiments revealed that the enforced expression of Beclin‐1 increased Ulk1 expression and level of free‐Beclin‐1 that did not bind to the Bcl‐2 despite the Bcl‐2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co‐overexpression of Bcl‐2 and Beclin‐1 also protected the cells from cell death more efficiently than Bcl‐2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro‐autophagy engineering together with anti‐apoptosis engineering yields a synergistic effect and successfully enhances the anti‐cell death engineering of CHO cells. Biotechnol. Bioeng. 2013; 110: 2195–2207. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号