首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Appropriate definitionof neural network architecture prior to data analysis is crucialfor successful data mining. This can be challenging when the underlyingmodel of the data is unknown. The goal of this study was to determinewhether optimizing neural network architecture using genetic programmingas a machine learning strategy would improve the ability of neural networksto model and detect nonlinear interactions among genes in studiesof common human diseases.

Results

Using simulateddata, we show that a genetic programming optimized neural network approachis able to model gene-gene interactions as well as a traditionalback propagation neural network. Furthermore, the genetic programmingoptimized neural network is better than the traditional back propagationneural network approach in terms of predictive ability and powerto detect gene-gene interactions when non-functional polymorphismsare present.

Conclusion

This study suggeststhat a machine learning strategy for optimizing neural network architecturemay be preferable to traditional trial-and-error approaches forthe identification and characterization of gene-gene interactionsin common, complex human diseases.
  相似文献   

2.

Background

Integrative analysis on multi-omics data has gained much attention recently. To investigate the interactive effect of gene expression and DNA methylation on cancer, we propose a directed random walk-based approach on an integrated gene-gene graph that is guided by pathway information.

Methods

Our approach first extracts a single pathway profile matrix out of the gene expression and DNA methylation data by performing the random walk over the integrated graph. We then apply a denoising autoencoder to the pathway profile to further identify important pathway features and genes. The extracted features are validated in the survival prediction task for breast cancer patients.

Results

The results show that the proposed method substantially improves the survival prediction performance compared to that of other pathway-based prediction methods, revealing that the combined effect of gene expression and methylation data is well reflected in the integrated gene-gene graph combined with pathway information. Furthermore, we show that our joint analysis on the methylation features and gene expression profile identifies cancer-specific pathways with genes related to breast cancer.

Conclusions

In this study, we proposed a DRW-based method on an integrated gene-gene graph with expression and methylation profiles in order to utilize the interactions between them. The results showed that the constructed integrated gene-gene graph can successfully reflect the combined effect of methylation features on gene expression profiles. We also found that the selected features by DA can effectively extract topologically important pathways and genes specifically related to breast cancer.
  相似文献   

3.
Yan X  Zheng T 《BMC genomics》2008,9(Z2):S14

Background

Gene expression data extracted from microarray experiments have been used to study the difference between mRNA abundance of genes under different conditions. In one of such experiments, thousands of genes are measured simultaneously, which provides a high-dimensional feature space for discriminating between different sample classes. However, most of these dimensions are not informative about the between-class difference, and add noises to the discriminant analysis.

Results

In this paper we propose and study feature selection methods that evaluate the "informativeness" of a set of genes. Two measures of information based on multigene expression profiles are considered for a backward information-driven screening approach for selecting important gene features. By considering multigene expression profiles, we are able to utilize interaction information among these genes. Using a breast cancer data, we illustrate our methods and compare them to the performance of existing methods.

Conclusion

We illustrate in this paper that methods considering gene-gene interactions have better classification power in gene expression analysis. In our results, we identify important genes with relative large p-values from single gene tests. This indicates that these are genes with weak marginal information but strong interaction information, which will be overlooked by strategies that only examine individual genes.
  相似文献   

4.
5.

Background

Glioblastoma multiforme, the most prevalent and aggressive brain tumour, has a poor prognosis. The molecular mechanisms underlying gliomagenesis remain poorly understood. Therefore, molecular research, including various markers, is necessary to understand the occurrence and development of glioma.

Method

Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network in TCGA glioblastoma samples. Gene ontology (GO) and pathway-enrichment analysis were used to identify significance of gene modules. Cox proportional hazards regression model was used to predict outcome of glioblastoma patients.

Results

We performed weighted gene co-expression network analysis (WGCNA) and identified a gene module (yellow module) related to the survival time of TCGA glioblastoma samples. Then, 228 hub genes were calculated based on gene significance (GS) and module significance (MS). Four genes (OSMR + SOX21?+?MED10?+?PTPRN) were selected to construct a Cox proportional hazards regression model with high accuracy (AUC?=?0.905). The prognostic value of the Cox proportional hazards regression model was also confirmed in GSE16011 dataset (GBM: n?=?156).

Conclusion

We developed a promising mRNA signature for estimating overall survival in glioblastoma patients.
  相似文献   

6.

Background

With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking.

Results

We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions.

Conclusions

Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.
  相似文献   

7.

Background

Identification of common genes associated with comorbid diseases can be critical in understanding their pathobiological mechanism. This work presents a novel method to predict missing common genes associated with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize network based module separation from two subgraphs produced by mapping genes associated with disease onto the interactome.

Results

Using cross validation on more than 600 disease pairs, our method achieves significantly higher average receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data.

Conclusion

Missing common genes prediction is aimed to complete gene set associated with comorbid disease for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to comorbid diseases. This method can be further considered for prediction of missing edges to complete the subgraph associated with disease pair.
  相似文献   

8.

Background

Bacterial genomes develop new mechanisms to tide them over the imposing conditions they encounter during the course of their evolution. Acquisition of new genes by lateral gene transfer may be one of the dominant ways of adaptation in bacterial genome evolution. Lateral gene transfer provides the bacterial genome with a new set of genes that help it to explore and adapt to new ecological niches.

Methods

A maximum likelihood analysis was done on the five sequenced corynebacterial genomes to model the rates of gene insertions/deletions at various depths of the phylogeny.

Results

The study shows that most of the laterally acquired genes are transient and the inferred rates of gene movement are higher on the external branches of the phylogeny and decrease as the phylogenetic depth increases. The newly acquired genes are under relaxed selection and evolve faster than their older counterparts. Analysis of some of the functionally characterised LGTs in each species has indicated that they may have a possible adaptive role.

Conclusion

The five Corynebacterial genomes sequenced to date have evolved by acquiring between 8 – 14% of their genomes by LGT and some of these genes may have a role in adaptation.
  相似文献   

9.

Background

Human cancers are complex ecosystems composed of cells with distinct molecular signatures. Such intratumoral heterogeneity poses a major challenge to cancer diagnosis and treatment. Recent advancements of single-cell techniques such as scRNA-seq have brought unprecedented insights into cellular heterogeneity. Subsequently, a challenging computational problem is to cluster high dimensional noisy datasets with substantially fewer cells than the number of genes.

Methods

In this paper, we introduced a consensus clustering framework conCluster, for cancer subtype identification from single-cell RNA-seq data. Using an ensemble strategy, conCluster fuses multiple basic partitions to consensus clusters.

Results

Applied to real cancer scRNA-seq datasets, conCluster can more accurately detect cancer subtypes than the widely used scRNA-seq clustering methods. Further, we conducted co-expression network analysis for the identified melanoma subtypes.

Conclusions

Our analysis demonstrates that these subtypes exhibit distinct gene co-expression networks and significant gene sets with different functional enrichment.
  相似文献   

10.

Background

In Caenorhabditis elegans early embryo, cell cycles only have two phases: DNA synthesis and mitosis, which are different from the typical 4-phase cell cycle. Modeling this cell-cycle process into network can fill up the gap in C. elegans cell-cycle study and provide a thorough understanding on the cell-cycle regulations and progressions at the network level.

Methods

In this paper, C. elegans early embryonic cell-cycle network has been constructed based on the knowledge of key regulators and their interactions from literature studies. A discrete dynamical Boolean model has been applied in computer simulations to study dynamical properties of this network. The cell-cycle network is compared with random networks and tested under several perturbations to analyze its robustness. To investigate whether our proposed network could explain biological experiment results, we have also compared the network simulation results with gene knock down experiment data.

Results

With the Boolean model, this study showed that the cell-cycle network was stable with a set of attractors (fixed points). A biological pathway was observed in the simulation, which corresponded to a whole cell-cycle progression. The C. elegans network was significantly robust when compared with random networks of the same size because there were less attractors and larger basins than random networks. Moreover, the network was also robust under perturbations with no significant change of the basin size. In addition, the smaller number of attractors and the shorter biological pathway from gene knock down network simulation interpreted the shorter cell-cycle lengths in mutant from the RNAi gene knock down experiment data. Hence, we demonstrated that the results in network simulation could be verified by the RNAi gene knock down experiment data.

Conclusions

A C. elegans early embryonic cell cycles network was constructed and its properties were analyzed and compared with those of random networks. Computer simulation results provided biologically meaningful interpretations of RNAi gene knock down experiment data.
  相似文献   

11.
12.

Background

Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and compositon of simple sequence repeats (SSRs) between both replicons and also compared the respective compositional biases.

Results

Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed.

Conclusions

The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.
  相似文献   

13.

Background

Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information.

Methods

This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression.

Results

The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks.

Conclusion

The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.
  相似文献   

14.

Background

With the development of high-throughput genotyping and sequencing technology, there are growing evidences of association with genetic variants and complex traits. In spite of thousands of genetic variants discovered, such genetic markers have been shown to explain only a very small proportion of the underlying genetic variance of complex traits. Gene-gene interaction (GGI) analysis is expected to unveil a large portion of unexplained heritability of complex traits.

Methods

In this work, we propose IGENT, Information theory-based GEnome-wide gene-gene iNTeraction method. IGENT is an efficient algorithm for identifying genome-wide gene-gene interactions (GGI) and gene-environment interaction (GEI). For detecting significant GGIs in genome-wide scale, it is important to reduce computational burden significantly. Our method uses information gain (IG) and evaluates its significance without resampling.

Results

Through our simulation studies, the power of the IGENT is shown to be better than or equivalent to that of that of BOOST. The proposed method successfully detected GGI for bipolar disorder in the Wellcome Trust Case Control Consortium (WTCCC) and age-related macular degeneration (AMD).

Conclusions

The proposed method is implemented by C++ and available on Windows, Linux and MacOSX.
  相似文献   

15.

Background

With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants.

Results

Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes.

Conclusion

The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.
  相似文献   

16.

Background

Complex chronic diseases are usually not caused by changes in a single causal gene but by an unbalanced regulating network resulting from the dysfunctions of multiple genes or their products. Therefore, network based systems approach can be helpful for the identification of candidate genes related to complex diseases and their relationships. Axial spondyloarthropathy (SpA) is a group of chronic inflammatory joint diseases that mainly affect the spine and the sacroiliac joints. The pathogenesis of SpA remains largely unknown.

Results

In this paper, we conducted a network study of the pathogenesis of SpA. We integrated data related to SpA, from the OMIM database, proteomics and microarray experiments of SpA, to prioritize SpA candidate disease genes in the context of human protein interactome. Based on the top ranked SpA related genes, we constructed a SpA specific PPI network, identified potential pathways associated with SpA, and finally sketched an overview of biological processes involved in the development of SpA.

Conclusions

The protein-protein interaction (PPI) network and pathways reflect the link between the two pathological processes of SpA, i.e., immune mediated inflammation, as well as imbalanced bone modelling caused new boneformation and bone loss. We found that some known disease causative genes, such as TNFand ILs, play pivotal roles in this interaction.
  相似文献   

17.

Background

Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis.

Methods

We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways.

Results

The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism.

Conclusion

Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.
  相似文献   

18.

Background

Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks.

Results

In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis.

Conclusions

Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.
  相似文献   

19.

Background

The identification of genes responsible for human inherited diseases is one of the most challenging tasks in human genetics. Recent studies based on phenotype similarity and gene proximity have demonstrated great success in prioritizing candidate genes for human diseases. However, most of these methods rely on a single protein-protein interaction (PPI) network to calculate similarities between genes, and thus greatly restrict the scope of application of such methods. Meanwhile, independently constructed and maintained PPI networks are usually quite diverse in coverage and quality, making the selection of a suitable PPI network inevitable but difficult.

Methods

We adopt a linear model to explain similarities between disease phenotypes using gene proximities that are quantified by diffusion kernels of one or more PPI networks. We solve this model via a Bayesian approach, and we derive an analytic form for Bayes factor that naturally measures the strength of association between a query disease and a candidate gene and thus can be used as a score to prioritize candidate genes. This method is intrinsically capable of integrating multiple PPI networks.

Results

We show that gene proximities calculated from PPI networks imply phenotype similarities. We demonstrate the effectiveness of the Bayesian regression approach on five PPI networks via large scale leave-one-out cross-validation experiments and summarize the results in terms of the mean rank ratio of known disease genes and the area under the receiver operating characteristic curve (AUC). We further show the capability of our approach in integrating multiple PPI networks.

Conclusions

The Bayesian regression approach can achieve much higher performance than the existing CIPHER approach and the ordinary linear regression method. The integration of multiple PPI networks can greatly improve the scope of application of the proposed method in the inference of disease genes.
  相似文献   

20.

Background

One common observation in infectious diseases caused by multi-strain pathogens is that both the incidence of all infections and the relative fraction of infection with each strain oscillate with time (i.e., so-called Epidemic cycling). Many different mechanisms have been proposed for the pervasive nature of epidemic cycling. Nevertheless, the two facts that people contact each other through a network rather than following a simple mass-action law and most infectious diseases involve multiple strains have not been considered together for their influence on the epidemic cycling.

Methods

To demonstrate how the structural contacts among people influences the dynamical patterns of multi-strain pathogens, we investigate a two strain epidemic model in a network where every individual randomly contacts with a fixed number of other individuals. The standard pair approximation is applied to describe the changing numbers of individuals in different infection states and contact pairs.

Results

We show that spatial correlation due to contact network and interactions between strains through both ecological interference and immune response interact to generate epidemic cycling. Compared to one strain epidemic model, the two strain model presented here can generate epidemic cycling within a much wider parameter range that covers many infectious diseases.

Conclusion

Our results suggest that co-circulation of multiple strains within a contact network provides an explanation for epidemic cycling.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号